Publications

Wheat Yield Forecasting for the Tisza River Catchment Using Landsat 8 NDVI and SAVI Time Series and Reported Crop Statistics

Authors: Attila Nagy, Andrea Szabó, Odunayo David Adeniyi and János Tamás

Due to the increasing global demand for food grain, early and reliable information on crop production is important in decision-making in agricultural production. Remote sensing (RS)-based forecast models developed from vegetation indices have the potential to give quantitative and timely information on crops for larger regions or even at farm scale. Different vegetation indices are being used for this purpose, however, their efficiency in estimating crop yield certainly needs to be tested. In this study, the wheat yield was derived by linear regressing reported yield values against a time series of six different peak-seasons (2013–2018) using the Landsat 8-derived Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI). NDVI- and SAVIbased forecasting models were validated based on 2018–2019 datasets and compared to evaluate the most appropriate index that performs better in forecasting wheat production in the Tisza river basin.

Impact of climate change on wetland ecosystems: A critical review of experimental wetlands

Authors: Shokoufeh Salimi; Suhad A.A.A.N. Almuktar; Miklas Scholz;

Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed.

Impact of future climate scenarios on peatland and constructed wetland water quality: A mesocosm experiment within climate chambers

Water purification is one of the most essential services provided by wetlands. A lot of concerns regarding wetlands subjected to climate change relate to their susceptibility to hydrological change and the increase in temperature as a result of global warming. A warmer condition may accelerate the rate of decomposition and release of nutrients, which can be exported downstream and cause serious ecological challenges; e.g., eutrophication and acidification. The aim of this study is to investigate the effect of climate change on water quality in peatland and constructed wetland ecosystems subject to water level management. For this purpose, the authors simulated the current climate scenario base on the database from Malm ̈o station (Scania, Sweden) for 2016 and 2017 as well as the future climate scenarios for the last 30 years of the century based on the Representative Concentration Pathway (RCP) and different regional climate models (RCM) for a region wider than Scania County.

Back to top of page