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1 Introduction 

1.1  The purpose of this deliverable  

Based on the overall objectives of WP4 and Tasks 1-5 within the WP, this deliverable (D4.2) 

summarises the outcomes of both field investigations and theoretical studies of wetlands coupled 

with different agricultural applications related to sediments, nutrients and pollutants and their 

impacts, both positive and negative. 

In particular, this report presents the following: 

(i) field study results from the two case study sites. 

(ii) assigned activities for each partner. 

(iii) knowledge base of the wetland-water-nutrients-sediment complex with analysis, evaluation and 

review.   

This deliverable is structured as follows:  

• Section 1: Purpose of the report and an overview of its objectives.  

• Section 2: Realised activities from partners for D4.2. 

• Section 3: Other WATERAGRI project-related work. 

  

1.2  Objectives  

With the widespread and large-scale application of constructed wetland technology, there is a strong 

need to further investigate the benefits and risks of direct coupling of wetland system to agricultural 

production activity regarding sediments, nutrients, pollutants and the water flux in both directions. A 

knowledge base of the wetland-water-nutrients-sediment complex with analysis, evaluation and 

critical review will provide answers to not only technical problems but also societal aspects (such as 

public acceptance level and participatory issues) as well as legal and policy level insights.  

WATERAGRI D4.2 will achieve the following objectives:  

A. Summary of field experiments and data analysis within WP4 and related WPs. This is to support 

the following point B as well. 

B. A knowledge base of wetland-water-nutrients-sediment interactions in the form of a state-of-the-

art report and a scientific literature review.  

C. Other related measurements and activities. 

 

2 Activities within the framework of D4.2 

2.1. Brief introduction of Dewaterability Estimation Test device DET 

Together with WP4's main activities, one of the tasks is the functional test of the Dewaterability 

Estimation Test device (DET) apparatus (within D3.3 and D4.2). The DET device consists of the DET 

software and the DET equipment (Figure 1). The DET equipment is currently available as a stainless-

steel prototype for high accuracy and durability with main elements of slot funnel, light-emitting 
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diode, camera, temperature and humidity sensors, light diffuser, laptop to laptop host the device 

software, cooling thermal paste and fan. This test aims to estimate the dewaterability of sludges, a 

sludge being a mixture of water and solids (speaking in simplified terms). In the WATERAGRI project, 

the DET apparatus measures how well a sludge can be dewatered. And this information can then be 

used to inform management decisions regarding the selection of dewatering technology. The testing 

and evaluation analyses have been described in report D3.3. 

 

 

2.2. Continued field data collection and analysis from, Farm 

constructed wetlands for nutrient recovery (C1) 

As part of the Roadshow Concept, described in Task 8.2, Open Days are envisioned as events designed 

to demonstrate to a farmer community all the benefits of implementing individual and combined 

WATERAGRI solutions by showcasing them to the farmers first-hand at our test site locations. The first 

presentation of a test site location was given online during the 1st WATERAGRI Consultation 

Workshop on 5th October 2020. Gustaf Ramel (the owner of Gårdstånga Nygård company) was 

responsible for demonstrating the construction of dikes, wetlands, and reservoirs at Gårdstånga 

Nygård (Sweden).  

Figure 1. Dewaterability Estimation Test in the WATERAGRI Project. 
https://www.youtube.com/watch?v=h2TxSo3v6D0&t=31s&ab_channel=WATERAGRIProject 
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As one of the farmer partners of WATERAGRI, Gårdstånga Nygård (GN) is a limited company operating 

agricultural activity on 200 ha of organic and 800 ha of conventional farmland. It is located in the 

municipality of Eslöv, northeast of Lund, Sweden, and is vulnerable to droughts. The C1 Farm 

constructed wetlands for nutrient recovery have been set up with a field plot for experiments. The 

experimental field includes key dikes, wetlands and reservoir interventions, with semi-automatic 

water level control in the reservoir. The detailed experimental setup and the location of plots for 

sampling are shown in Figure 2. The field comprises 64 parcels (each is 12 m × 12 m). In the 

experiment, three variables were tested (four replicates each): irrigation with water that passed 

through the wetland, water retainer product and phosphorus. There are 16x4 parcels and 4 controls. 

The harvest in 2021 was spring barley, and in 2022 it was winter wheat. The quantity and quality of 

harvests were analysed by an external organisation via GN.  

 

 

Besides the soil sampling for nutrients and pollutants analysis, a monthly water quality sampling 

program has also been carried out (The water sampling points are marked in Figure 2). Three 

categories of element samples were collected and analysed during the period of 2021-06-11 and 2022-

11-30, with 15 samplings in total. The three categories are Physical (pH, Redox, DO, TSS, Salinity, EC, 

Resistivity, TDS, Turbidity); Mineral (Al, As, Cu, Ni, Pb, Zn, Co, Cr, B, Cd, Ca, Fe, Mg, Mn, Na) and Organic 

matter and nutrients (TOC, DOC, TP, TN, NH4-N, NO3-N, K, BOD, COD). 

The results of the first step analysis of these elements are discussed and presented in WATERAGRI 

D4.1 and D5.3, except for variations of TSS and TDS, which are discussed here in this paragraph. 

Figure 2. Gårdstånga Nygård scheme. Small experimental field with 64 parcels, next to the new Farm Constructed Wetland. 
North and west of the wetland is the Rödabäck river which feeds the wetland. (The markers: USR, Inlet, 1-6, Outlet, P, and 
DSR are locations for water sampling points). 
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The temporal variation of TSS and TDS (Total Dissolved Solids) at different locations during the 

sampling period shows the largest interval in terms of amplitude. The TSS have a clear decreasing 

trend during the sampling period, with a few (seasonal) fluctuations, whereas TDS’s decreasing trend 

and the variations are not as large as TSS for the same period. On the other hand, the decreasing 

spatial trend from upstream to downstream is clearer for TDS, as shown in Figure 3. This means that 

TSS is more sensitive to seasonal flow fluctuations and that the newly constructed small-scale wetland 

at GN has already demonstrated a good function in reducing the TDS content along the flow direction 

downwards. 

 

 

Figure 3. Variation of TSS and TDS (Total Dissolved Solids) at different locations (from upstream point to 
downstream point) during the sampling period. 
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2.3. Literature review  

2.3.1 Selected Swedish case reports 

Since the C1 experiment is carried out in Sweden, a knowledge base of the wetland-water-nutrients-

sediment complex in a summary report based on Swedish conditions is highly relevant. A literature 

search found that the national organisation Svenskt Vatten (Svenskt Vatten is owned collectively by 

all Swedish municipalities) has a comprehensive collection of information in the form of statistics and 

reports for the Swedish water sector. Two recently published reports, “Sludge spreading on arable 

land - the importance of humus content” (Svenskt-Vatten, 2021), and “Recycling of nutrients from 

sewage” (Svenskt-Vatten, 2022), see Figure 4, gave in-depth analyses of current practices and 

conditions in nutrients use and re-use.  

 

In the English summary of Report Nr 2021-9 (Svenskt-Vatten, 2021), it is stated that the most 

important buffering factor for tackling extreme weather conditions is the soil’s organic matter, and an 

easy way to promote this is the supply of root sludge to the arable land. The original hypothesis was 

to test the function of this idea, analysing the long time series with harvest data from the two field 

trials with sludge dispersal on arable land in southwestern Skåne that have been going on since 1981, 

together with meteorological data on precipitation, where the evapotranspiration was calculated 

from data obtained through estimates for the region. However, the report did not make it clear 

whether the above hypothesis was confirmed or not. 

This field experiment-based study also considered the effects of future climate change. The 

conclusions and results are based on the three pre-defined hypotheses: 

▪ The positive moulding effect of sludge is especially important in dry growing seasons. 

 

Figure 4. Two recent Swedish publications on nutrient recovery and re-use. 
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▪ Harvests are less consistent due to moulding, both within the field and between years. 

▪ Significant carbon sequestration occurs, which means that the amount of greenhouse gases 

in the atmosphere is reduced. 

After the implementation of the study, the report found the following three main conclusions: 

1. The hydrological (water balance) models that have been used do not provide unequivocal 

results in understanding whether increased soil content through sludge application can favour 

plants during dry periods. However, there were tendencies for increased yields with higher 

water availability in the sludge-treated lines for spring-sown crops in Igelösa (A village some 

kilometres from the WATERAGRI case study site).   

2. The application of digested sludge gives an increased variation in yield, both between years 

and within fields. This variation is eliminated by fertilisation with N-P-K.  

3. Digested sludge provides significant carbon storage. Down to a depth of 40 cm, an average of 

35 % of the sludge has been stored as carbon in the soil at Igelösa, while the corresponding 

figure is lower for Petersborg (outside of Lund), 18%, which can be explained by the difference 

in clay content (26 and 14% respectively). 

In the second report Nr 2022-6 (Svenskt-Vatten, 2022), A detailed description was given of new 

technologies for nitrogen recovery from wastewater together with a comparison of the nitrogen 

recovery methods with other ways of producing nitrogen fertiliser in terms of climate impact and 

costs. The report also includes a brief review of potassium and sulphur recovery opportunities and a 

status update on phosphorus recovery methods. 

In this literature review-based study, both Swedish and international publications were included. The 

report warned that there is a risk that even the minor nitrogen recycling of sludge in Sweden today 

will be stopped if sludge use on arable land is to be banned at the same time as the requirement for 

phosphorus recycling is introduced. The most interesting phosphorus recovery methods involve 

sludge incineration and recovery from ashes, which means that the nitrogen content is lost during the 

incineration. Some alternative methods for phosphorus and nitrogen were also discussed. For 

instance, several technologies for nitrogen recovery from rejected water are available at full scale. The 

technology that has been implemented to the greatest extent is ammonia stripping. The technology 

is particularly interesting if recovery at a wastewater treatment plant can be combined with large-

scale production of nitrogen fertiliser from other sources, such as at the VEAS in Oslo, or if a solid 

nitrogen product can be produced, such as with the so-called Eco:N technology that is currently being 

trialled. Contact membranes are another technology available on a full scale in Germany and being 

evaluated on a pilot scale at RecoLab in Helsingborg. The technology provides similar consumption of 

chemicals and energy as ammonia stripping. 

It is summarised that ammonia stripping and contact membranes are the techniques for nitrogen 

recovery from rejected water that is applied on full scale and have a similar and relatively high 

consumption of chemicals and energy. Other methods have been tested for wastewater streams like 

reject water, including thermal stripping of ammonia with further chemical reaction with gypsum or 

distillation to ammonia water. Evaporation and distillation are also developed techniques that can 

potentially recover nitrogen. 
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2.3.2 Literature review 

There are lots of examples of constructed wetland (CW) applications worldwide in wastewater 

treatment and reuse (Dell'Osbel et al., 2020), pollutant removal (Ebrahimi et al., 2021), nature 

conservation (Everard et al., 2012) as well as multi-purpose ecological and environmental restoration 

(Shingare et al., 2019, Gupta et al., 2021, Nan et al., 2020). There are also emerging and tangible 

technologies and applications developed 

in parallel, such as nature-based solutions 

(Abrahams et al., 2017), stormwater 

control (e.g., low-impact development) as 

described by (Alihan et al., 2018) and 

blue-green infrastructure concept for a 

sustainable society (Bell et al., 2019, 

Gulbaz and Kazezyilmaz-Alhan, 2017, 

Hager et al., 2019, Zhang and Chui, 2019). 

However, there is a strong need to further 

assess the benefits and risks of direct 

coupling of wetland systems to 

agricultural production activity regarding 

sediments, nutrients, pollutants and the 

water flux in both directions. In this Figure 5. Inter-relation of wetlands coupled to agriculture activities. 

Figure 6. Chord-diagram illustrating inter-dependences of search keywords. 
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review study, the authors particularly focus on the inter-relationship of nature-based solutions, 

constructed wetlands and agriculture concerning the wetland-water-nutrients-sediment nexus. This 

simplified inter-relation is illustrated in Figure 5.  

A scientific literature review article: for the international perspective, a scientific literature review has 

been carried out based on the most relevant international publications of the last 20 years. The title 

of the resulting review article will be “Risk Assessment for Wetland Sediment Applications on 

Agricultural Land: A Critical Review”.  

Compared to Figure 5 showing the nexus relationship, the inter-relationships of the associated 

keywords are more complex, showing multiple connections and interactions. A graphical relation map 

as a chord diagram is shown in Figure 6 where the “legislation barrier”, for instance, is impacting all 

other aspects. 

The literature search with relevant keywords relating to the wetland and agricultural activity has 

identified the following aspects as the most relevant and crucial for the current risk assessment of 

Farm Constructed Wetlands (FCW): The most relevant paper using the concept of farm-constructed 

wetlands (FCW) exclusively is one by (Carty et al., 2008). A more frequently used term is integrated 

constructed wetland (ICW), which usually comprises more than one wetland cell (Harrington and 

McInnes, 2009, Scholz et al., 2010, Everard et al., 2012, Mustafa et al., 2009, Ludwig and Hession, 

2015). In some countries like Italy, drainage ditches are often regarded as farm-constructed wetlands 

(Dollinger et al., 2015). In Sweden, the FCW has been less relevant since the main focus has been on 

nutrient uptake and heavy metal removal (Davidsson, 2003),(Jordbruksverket, 2004). 

 

1) Wetland nutrient recovery in agriculture.  

In recent years, many research studies on wetland nutrient recovery have been carried out (Xia et al., 

2016, Rosolen et al., 2015, Uwimana et al., 2018b, Magwaza et al., 2020, Yamanaka et al., 2017, 

Banaszuk et al., 2020, Zubair et al., 2020, Qin et al., 2021, Bonanno et al., 2013, Francisco et al., 2014, 

Craft et al., 2018, Schweizer et al., 2018, Rosemarin et al., 2020, Hopple and Craft, 2013, Adegbeye et 

al., 2020). However, specific applications in agriculture and farming land are much less studied both 

internationally and in Sweden (Magwaza et al., 2020, Banaszuk et al., 2020, Cui et al., 2020, Abbott et 

al., 2018, Costantini et al., 2020, Adegbeye et al., 2020). Wetland nutrient recovery in, in general 

terms, is very commonly practised in Sweden, but much less so for agricultural products (SFA, 2023), 

(Tonderski, 2002),(Marmolin, 2009). 

 

2) Wetland treated effluent reuse in agriculture.  

(Ofori et al., 2021) used a benefit-drawback analysis approach for treated wastewater use for crops 

and other agricultural products and found it beneficial provided the use is optimised for local 

conditions. Even wastewater-based vegetable production was reported with some success ((Inyinbor 

et al., 2019). A quantitative study on nitrogen and phosphorus removal rate was applied and reported 

by (Dal Ferro et al., 2018) and (Andreo-Martínez et al., 2017) with promising results which can be 

expanded to other similar areas. However, this kind of reuse has legal difficulties, especially in Sweden. 

The food security concern related to treated effluent reuse in agriculture (especially crops) is strictly 

regulated in Sweden. Constructed wetlands are covered by habitat protection according to the 

Ordinance 1998:1252 on area protection according to the Environmental Code (SWEPA, 2014). Within 

a habitat protection area, conducting any activity or taking any action that may harm the natural 
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environment is prohibited. Therefore, anyone planning to conduct an activity or take action within a 

habitat protection area must first assess whether it may harm the natural values of the habitat. If 

there is a risk of damage to the natural environment, the County Administrative Board must seek a 

dispensation from the habitat protection regulations. If there are special reasons, a dispensation from 

the prohibition may be granted in individual cases. 

 

3) Wetland coupled with agriculture.  

From a historical perspective from the 18th century, (Güldner and Krausmann, 2017), used an index-

based method for organic farming analysis and concluded that organic farming could introduce some 

instability in nutrients exchange. The trend of combining wetlands with agricultural production is 

increasing worldwide. A public policy design study in a region of France with wet grassland was 

reported by (Hardy et al., 2020), where a so-called Agri-Environmental Scheme (AES) was introduced 

to farmers as an incentive for increased biodiversity, although the acceptance level by the farmers 

must be improved in order to resolve a number of contradiction and/or dilemmas in environmental 

development. A Canadian research study coupling wetlands with agriculture was carried out by 

(Brunet and Westbrook, 2012), where the transport of nutrients, bacteria and salt were quantified 

under field conditions and compared to natural spills. These results could be a good reference base in 

comparison with European conditions, such as the historical review study carried out by (Güldner and 

Krausmann, 2017). For a larger area in India, (Singh and Sinha, 2019) performed a detailed land 

use/land cover (LULC) analysis connected to hydrology. An SWMM model-based simulation of 

horizontal subsurface flow in constructed wetlands was carried out by (Alihan et al., 2018), where 

hydraulic/hydrologic parameters were studied for a series of storm events. A vegetable crop 

production combined with wetland soil nutrient transport was given by (Solaiman et al., 2019). For a 

quick analysis method, (Rebelo et al., 2019)  proposed a wetland hydro-geomorphic unit system to 

quantify the ecosystem service in a multi-wetlands case. We strongly suggest using a unified 

framework to quantify the ecosystem service benefits linked to general agriculture and farming 

activities.  

4) Nutrient uptake in farming.  

Many general studies on nutrient uptake in farming practices were found by literature search (Dai et 

al., 2021, Xia et al., 2016, Semida et al., 2019, Pooniya et al., 2021, Uwimana et al., 2018a, Marandure 

et al., 2020, Cardinal et al., 2014, Marella et al., 2021, Wielemaker et al., 2019, Vroom et al., 2020, 

Vundavalli et al., 2015, Temmink et al., 2017, Mazhar et al., 2021, Mishra et al., 2019, Campling et al., 

2021, Adamtey et al., 2016, Konrad et al., 2019, Szymczak et al., 2020, Biernat et al., 2020, Knook et 

al., 2020, Dungait et al., 2012, Higgins et al., 2019, Martin et al., 2020, Branca et al., 2021, Jew et al., 

2020, Kour et al., 2020, Güldner and Krausmann, 2017, Ávila et al., 2021, Costantini et al., 2020, Collins 

et al., 2021, Gordon et al., 2021, Alavaisha et al., 2019, Adegbeye et al., 2020). Most of these authors 

described both advantages and disadvantages (advantages are often related to economic gain and 

increased income, whereas the disadvantages are mostly related to environmental concerns and 

ecology) of farming, such as crop-based farming like rice or fish farming. (Biernat et al., 2020) discussed 

the organic farming system with a focus on TN in a European context related to the EU-Nitrate 

directive and found that organic farming systems often fail to meet the requirements of given 

environmental standards for water protection in the EU, calling for integrated approaches. In 

Sweden, such activities are often focused on restoration rather than uptake. The most common 

purposes in Sweden are to achieve 1) conversion of nitrate to nitrogen gas by denitrification process, 

2) plant nutrient uptake in the wetland by plants or vegetation and 3) fixation of nutrients in sediments 
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for a long-term purpose (Marmolin, 2009). This is considered an effective way to reduce nutrient 

transport to recipients (Sonesten, 2004), (Rosemarin et al., 2020). 

5) Treated wastewater reuse in farming.  

Treated wastewater reuse in farming might be an alternative in many parts of the world with severe 

water shortages and scarcity. A review article, (Inyinbor et al., 2019) discussed detailed benefits, risks 

and challenges in wastewater irrigated vegetable production in such areas. In a similar study, 

(Anastasis et al., 2017) examined various elements concerning vegetable growth, such as 

pharmaceutical compounds and other hazardous pollutants. (De Corato, 2020) presented a 

circular economic review about on-farm composting and compost-based tea application for soil 

and plant improvement through the so-called virtuous reuse of agricultural waste, which is 

considered less controversial since it is not treating edible crops directly. The author claims 

that “compost can be indeed virtuously used for recovering degraded soils, restoring soil fertility 

by C-sequestration, and reducing the use of chemical inputs and the negative environmental 

impacts” although no further evidence was provided. There are rarely similar reports from 

Sweden due to the concern of high risks associated with hazardous pollutants. Most of the 

literature found are examples from areas where water shortage is a main challenge. (Saliba et 

al., 2018, Bedbabis et al., 2015, Qadir et al., 2010, Natasha et al., 2021, Hanjra et al., 2012, 

Sou/Dakouré et al., 2013, Grundmann and Maaß, 2017, Kumar et al., 2014, Rosemarin et al., 2020). 

6) Sediment contamination risks in wetlands. 

Wetland sediments are generally considered an uncertain risk factor due to a lack of detailed analysis 

of their chemical and biological effects. In Sweden, The County authorities consider them sludge. It is 

important to investigate in more detail to provide a more reliable interpretation. (Bemanikharanagh 

et al., 2017) concluded that contaminants such as PAHs are generally high in a middle east large-scale 

wetland system. This result was confirmed by (Torghabeh et al., 2020), related to an earlier study by 

(Alhashemi et al., 2011). Metal and heavy-metal contamination were found in natural wetlands 

reported by (la Torre M. Catalina et al., 2018), suggesting a long-term accumulation process. 

Furthermore, severe problems with organochlorine pesticides (OCPs) in connection with aquaculture 

activity were reported by (Buah-Kwofie et al., 2018) and (Kumar et al., 2011), suggesting carefulness 

in using such pesticides. On the other hand, successful efforts to manage the contaminations by 

cyanobacteria were reported in a constructed wetland system (Zhong et al., 2011). Tracer and index-

based sedimentological investigation can also be found in (Torghabeh et al., 2020), indicating a highly 

varying enrichment of many elements in wetlands. On the other hand, in the mangrove wetland 

system case (see Xue et al., 2009), the mangrove-derived organic matter in sediment cores from the 

mangrove wetland was quantified and compared with the conclusion that organic matter preserved 

in the sediments was not predominantly composed of the mangrove-derived organic matter. This was 

also confirmed by (Kinimo et al., 2018), (and Jeppe et al., 2017). The corresponding impact on 

groundwater was studied by (Mendes et al., 2020) and for an urban environment (Bell et al., 2019). 

For a lake-coupled wetland case, (Morales-García et al., 2020) investigated the metal contamination 

and other risks of heavy metal for pollution source control, which was considered crucial for large 

wetland areas in cities like Mexico City. 

7) Environmental impact of wetland effluent reuse in agriculture. 

Treated wastewater reuse has always been controversial due to the risk of contamination. (Ofori et 

al., 2021) compared benefits and drawbacks in crop-based agriculture and general farming practice 

where wastewater was used, their most important conclusion was the risks of emerging effects from 

different elements. In comparison with the World Health Organization (WHO)’s approach to microbial 
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risk assessment in pathogen reduction, (Licciardello et al., 2018) proposed a tertiary treatment 

approach to be practised for crop production. A quantitative study of engineered nanomaterials 

(ENMs) was done by (Liu et al., 2018) to quantify the impact of wastewater effluent when used in 

agriculture. In a similar case of using the ash of energy crops as food crop fertiliser, (Bonanno et al., 

2013) concluded that biomass ash from constructed wetlands can be considered as a potential 

fertiliser rather than hazardous waste, despite the findings that metal concentration in ash is much 

higher compared to what is found in normal plants. 

8) Legislative barriers in wetland sediment recycling on agricultural fields.  

There is a common interest in Sweden to convert wastewater to resources in a circular economy 

thinking (Finnson, 2021), (Börjesson, 2018), (Naturvårdsverket, 1999). In cases where landowners in 

Sweden receive compensation for establishing a wetland, an agreement is usually drawn between the 

landowner and the counterpart representing the state. Normally, this would be a municipality or the 

local water council. In such an agreement, the landowner is committed to abiding by certain terms 

regarding both construction and operation of the wetland. If the agreement is violated, the landowner 

might forfeit the financial subsidies. (Gómez-Baggethun et al., 2019) provided an in-depth analysis of 

land use policies on ecosystem services within the Danube Delta area and concluded that 

benefits from ecological restoration policies are apparent but not enough to meet future 

challenges without policy support. 

 

3 Other WATERAGRI-related work 

3.1 Reports from the Swedish case site 

Relating to assessing the recovery and reuse of nutrients from eutrophic water bodies for growing, 

various experiments and field studies have also been carried out at GN to support developing and 

evaluating other WATERAGRI solutions, as described above. A detailed report is given in the 

WATERAGRI D4.1 “Description of Developed Wetland Technologies”, Chapter 3.  

A summary of the most important findings from Chapter 3 (D4.1) is summarised below: 

Productive wetlands in a general context: There is an opportunity to combine the objective of 

reducing local and regional eutrophication with another objective: increasing farm production with no 

extra input from fertilisers. Such an increase in farm production could be achieved by using wetland 

water for irrigation. Growing plants to produce food or energy is thus a palatable option. However, it 

takes careful planning and consideration of several factors. Such aspects are: 

▪ Suitable plants  
▪ Demands on the operation of the wetland and possible consequences for other objectives 
▪ Legal requirements for such activities 
▪ Commercial aspects 
▪ Legal aspects are essentially national in character, and the suitability of plants is basically a 

function of geographical/climatological data. 
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Considerations regarding Edible plants and Energy crops - Swedish context: Legal aspects -

Constructed wetlands are covered by habitat protection according to the Ordinance 1998:1252 on 

area protection according to the Environmental Code (SWEPA, 2014). Within a habitat protection area, 

it is not allowed to conduct any activity or take any action that may harm the natural environment. 

Therefore, anyone planning to conduct an activity or take action within a habitat protection area must 

first assess whether it may harm the natural values of the habitat. If there is a risk of damage to the 

natural environment, the County Administrative Board must seek a dispensation from the habitat 

protection regulations. If there are special reasons, a dispensation from the prohibition may be 

granted in individual cases. Commercial aspects - The possibilities for selling leafy greens grown in 

surface water from agricultural lands, such as water mint, are limited. It is difficult to control the purity 

of the water. The risk of flooding and contamination of the plants is high, while the requirements of 

the Swedish Food Agency for irrigation water for leafy greens are high (SFA, 2023). Commercial aspects 

for energy crops - Compared to edible crops, the legal framework surrounding the production and 

sales of energy crops is fairly simple. 

On the other hand, the profitability is not as stable as the grower might wish for. This is mainly due to 

fluctuating prices on the market for the fuels produced. This, in turn, depends on market prices for 

other energy commodities. The market in Sweden for Salix fuel is highly localised, with effects on both 

fuel price and transport costs. 

The above analysis concludes that a) Edible crops are not a viable option for developing a productive 

wetland at Gårdstånga Nygård; b) Growing willow for energy is an attractive alternative for making 

the wetland system productive. 

3.2 Reports from Austria and Italian case sites 

UNIBO and CER analysed the recovery of nutrients from agricultural drainage water. A pilot plant 

based on wetland mesocosms was set up to test different substrates and different plant species to 

enhance nutrient removal from agricultural drainage water and allow for their later use as 

fertiliser/soil amendment.  

Based on the results of task 4.4, activated biochar will also give added value to the constructed 

wetland (studied by ALCN, UNIBO and CER), which provides ways to improve the moisture retention 

capacity of soils. The residual biomass can then be harvested, shredded and supplied as feedstock to 

other local biomass conversion processes like biogas plants. Alternatively, they can also be used for 

mulching or composting material on site, thus, fully closing nutrient loops. Details of this work have 

been summarised in two factsheets “Factsheet: A Filter System for Subsurface Drainage Water 

Treatment (C2)” and “A Bio-Inspired Multi-Layer Filter System” (see WATERAGRI D6.2). 

4 Conclusions 

For the Swedish case site at Gårdstånga Nygård (GN): 

▪ Most indicators based on analysis results show no significant water quality problems with low 

concentration and small variation intervals.  

▪ The pH and turbidity show a clear variation pattern. pH has a max-min-mean value of 9.78 – 

6.7 –7.79, showing a slight tendency of basicity. 
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▪ For nutrients and other indicators, the variation range of each parameter for the water 

samples is smaller than that for minerals. All the values are within the safety intervals for these 

indicators (EU, 1998; WHO, 2017). 

▪ Wetland sediment applications on agricultural land are a complex issue, with increased 

challenges when additional aspects such as nutrient recovery must be incorporated. 

Furthermore, legislative barriers are not clearly addressed in many cases, especially in 

Sweden.  

▪ The identified 8 keyword phrases provide a holistic view when interacting with the FCW 

system. We conclude that these 8 keyword phrases are equally important and must be treated 

carefully when implementing the FCW system for nutrient recycling and recovery. 
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