
D3.1: Assessment of Use of 

Remotely Sensed Vegetation to 

Improve Irrigation 

10/2021 

WP 3 Innovative Sustainable Water Retention and 

Management Measures 

Ref. Ares(2021)6715294 - 31/10/2021



 H2020-SFS-2018-2020                                                                                                                              

2 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

 

 

 

Author(s)/Organisation(s) Attila Nagy (UNIDEB)  
Zsolt Zoltán Fehér (UNIDEB)  
Tamás Magyar (UNIDEB)  
Philip Brunner (UNINE)  
Oliver Schilling (UNINE) 
Harrie-Jan Hendricks-Franssen (FZJ) 
Francesco Cavazza (CER)  
Kedar Ghag (OULU) 
Syed Mustafa (OULU) 
Bjørn Kløve (OULU) 
Ali Torabi Haghighi (OULU) 

Contributor(s) Haidi Abdullah (VULTUS) 
Erika Buday-Bódi (UNIDEB)  
János Tamás (UNIDEB)  
Dávid Pásztor (UNIDEB) 
Andrea Szabó (UNIDEB)  
Wiesław Fiałkiewicz (UPWr)  
Arkadiusz Głogowski (UPWr)  
Adriano Battilani (CER) 
Diego Guidotti (Agricolus) 

Work Package WP3 

Delivery Date (DoA) 31/10/2021 

Actual Delivery Date 31/10/2021 

Abstract: Deliverable  “D3.1: Assessment of Use of Remotely Sensed Vegetation 
to Improve Irrigation” report the activities of Tasks T3.2 (Irrigation 
Scheduling). The Deliverable describes the role of Lidar in excess 
water risk mapping, the utilization of groundwater and surface water 
for irrigation, hydrological modelling to support irrigation, RS based 
yield prediction model and RS based vegetation data in irrigation. 

Document Revision History 

Date Version Author/Contributor/ Reviewer Summary of main changes 

27/07/2021 v1 Attila Nagy (UNIDEB) table of contents (structure plan) 

21/09/2021 v2 Attila Nagy (UNIDEB), 
Diego Guidotti (Agricolus), 
Haidi Abdullah (VULTUS), 
Bjørn Kløve (OULU), 
Adriano Battilani (CER) 

first draft (includes data and 
information requested) 

27/09/2021 v3 Attila Nagy (UNIDEB), 
Oliver Schilling (UNINE), 
Harrie-Jan Hendricks-Franssen 
(FZJ) 

2nd internal draft 

30/09/2021 v4 Attila Nagy (UNIDEB), 
Wiesław Fiałkiewicz (UPWr)  

3rd internal draft 

02/10/2021 v5 UNIDEB and other partners 4th internal draft 

12/10/2021 v6 Attila Nagy (UNIDEB) and other 
UNIDEB partners, 

content check (chapters 
including figures and tables) 



 H2020-SFS-2018-2020                                                                                                                              

3 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

 

  

Bjørn Kløve (OULU), 
Harrie-Jan Hendricks-Franssen 
(FZJ) 

29/10/2021 v7 Harrie-Jan Hendricks-Franssen 
(FZJ), 
Erika Buday-Bódi (UNIDEB) and 
UNIDEB colleagues 

language and formal check 

30/10/2021 v8 Suhad Almuktar (ULUND), 
Sebastian Puculek (ULUND) 

quality check 

31/10/2021 final Miklas Scholz (ULUND) final version 

Dissemination Level 

PU Public X 



 H2020-SFS-2018-2020                                                                                                                              

4 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

 

WATERAGRI Consortium 

Participant 
Number 

Participant organisation name 
Short 
name 

Country 

1 LUNDS UNIVERSITET ULUND SE 

2 EDEN MICROFLUIDICS EDEN FR 

3 FORSCHUNGSZENTRUM JULICH GMBH FZJ DE 

4 TEKNOLOGIAN TUTKIMUSKESKUS VTT Oy VTT FI 

5 DEBRECENI EGYETEM UNIDEB HU 

6 ALCHEMIA-NOVA GMBH ALCN AT 

7 
AGROGEO AGARFEJLESZTO-FOLDTANI-FOVALLALKOZO 
KORLATOLT FELELOSSEGU TATRSASAG 

AGROGEO HU 

8 UNIVERSITAET FUER BODENKULTUR WIEN BOKU AT 

9 ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA UNIBO IT 

10 THE UNIVERSITY OF SALFORD USAL UK 

11 
COCONSORZIO DI BONIFICA DI SECONDO GRADO PER IL 
CANALE EMILIANO ROMAGNOLO CANALE GIANDOTTI 

CER IT 

12 CENTRUM DORADZTWA ROLNICZEGO W BRWINOWIE CDR PL 

13 INOSENS DOO NOVI SAD INOSENS RS 

14 UNIWERSYTET PRZYRODNICZY WE WROCLAWIU UPWr PL 

15 
BAY ZOLTAN ALKALMAZOTT KUTATASI KOZHASZNU 
NONPROFIT KFT 

BZN HU 

16 VULTUS AB VULTUS SE 

17 TECHNISCHE UNIVERSITEIT DELFT TU DELFT NL 

18 UNIVERSITE DE NEUCHATEL UNINE CH 

19 AB GARDSTANGA NYGARD GN SE 

20 OULUN YLIOPISTO OULU FI 

21 AGRICOLUS SRL AGRICOLUS IT 

22 
INSTITUT NATIONAL DE RECHERCHE POUR 
L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT 

INRAE FR 

23 MARTIN REGELSBERGER TBR AT 

 

LEGAL NOTICE 

The information and views set out in this application form are those of the author(s) and do not 

necessarily reflect the official opinion of the European Union. Neither the European Union 

institutions and bodies, nor any person acting on their behalf may be held responsible for any use 

which may be made of the information contained therein. 

 
 

Funding Scheme: Research and Innovation Action (RIA) ● Theme: SFS-23-2019 
Start date of project: 01 May 2020 ● Duration: 48 months 

 

© WATERAGRI Consortium, 2020 
Reproduction is authorised provided the source is acknowledged. 

 

 



 H2020-SFS-2018-2020                                                                                                                              

5 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

Table of contents 

1 Introduction .................................................................................................................................. 12 

2 The role of Lidar in mapping excess water risk ............................................................................. 13 

2.1 Study site and methods ........................................................................................................ 13 

2.2 LiDAR in mapping excess water risk ...................................................................................... 15 

3 The use of surface and groundwater for irrigation ....................................................................... 18 

3.1 Study area and data .............................................................................................................. 18 

3.2 Methods ................................................................................................................................ 20 

3.2.1 Water balance ............................................................................................................... 20 

3.2.2 SPEI and NDVI ............................................................................................................... 20 

3.2.3 Water Balance Simulation (WBS) .................................................................................. 21 

3.3 Results ................................................................................................................................... 24 

3.3.1 Annual water balance ................................................................................................... 24 

3.3.2 SPEI and NDVI ............................................................................................................... 24 

3.3.3 Water Balance Simulation (WBS) .................................................................................. 26 

3.4 Discussion .............................................................................................................................. 27 

3.4.1 Available water resources for irrigation ....................................................................... 27 

3.4.2 Proposed alternative solution ....................................................................................... 28 

4 Hydrological modelling to support irrigation ................................................................................ 30 

4.1 Hydrus-based modelling of water fluxes and root water uptake in a maize cultivated area of 

Nyírbátor for the development of precision irrigation scheduling ................................................... 30 

4.1.1 Study site and description of the model ....................................................................... 30 

4.1.2 Setup and parameterization of the Hydrus model ....................................................... 32 

4.1.3 Results of the model ..................................................................................................... 37 

4.2 HydroGeoSphere based modelling ....................................................................................... 41 

4.2.1 Study site and methods ................................................................................................ 42 

4.2.2 Scenario comparison ..................................................................................................... 47 

4.2.3 Outlook.......................................................................................................................... 48 

5 Remote sensing based yield prediction model ............................................................................. 49 

5.1 Site and data description ...................................................................................................... 49 

5.2 Data processing ..................................................................................................................... 50 

5.3 Yield estimation models ........................................................................................................ 51 

6 Remote sensing based vegetation data in irrigation .................................................................... 57 

6.1 Satellite images of vegetation and soil with potential use for irrigation support ................ 57 

6.1.1 Study area ..................................................................................................................... 57 



 H2020-SFS-2018-2020                                                                                                                              

6 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

6.1.2 Methods ........................................................................................................................ 58 

6.1.3 Results ........................................................................................................................... 59 

6.2 Model concept for vegetation based ETc estimation ............................................................ 62 

6.2.1 Overview of the analysis ............................................................................................... 63 

6.2.2 Study site description .................................................................................................... 66 

6.2.3 Compilation of the database of observations ............................................................... 68 

6.2.4 The simplified model of crop coefficients (Kc) with VULTUS data ................................ 71 

6.2.5 Calculation of ETC for 2020 and 2021 with using RS based Kc calculation .................... 76 

6.2.6 NDVI-based ETc estimations in water balance modelling ............................................ 81 

7 Conclusions ................................................................................................................................... 84 

8 References .................................................................................................................................... 85 

9 Appendices .................................................................................................................................... 95 

 

 

  



 H2020-SFS-2018-2020                                                                                                                              

7 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

List of tables 

Table 1: Daily extra-terrestrial radiation for different months at 65° Latitudes (MJ m-2 day-1) ......................... 22 

Table2: Different soil (water holding) properties considered in the development of Water Balance Simulation 

(WBS) .................................................................................................................................................................... 23 

Table 3: The average results of major soil physical properties used in the Rosetta Lite v1.1. in-built module of 

the Hydrus software ............................................................................................................................................. 33 

Table 4: The parameters used to calculate the actual value of RWU ................................................................... 34 

Table 5: Kc and ETc ranges according to the crop development stages ................................................................ 35 

Table 6: Land cover classes in Temmesjoki basin ................................................................................................. 58 

Table 7: Earth Observation Satellite (EOS) data used in the study ....................................................................... 59 

Table 8: SPI-based drought categories ................................................................................................................. 59 

Table 9: Precipitation frequency over the last 20 years ....................................................................................... 61 

Table 10: Spatial (m), temporal (day) and spectral (μm) resolution of the most popular multispectral sensors 65 

Table 11: Soil analyses .......................................................................................................................................... 67 

Table 12: The overview of the data sources ......................................................................................................... 68 

Table 13: Correlation coefficients between estimated ETc curves....................................................................... 75 

Table 14: Results of regression between calculated empirical and theoretical FAO-56 evapotranspiration time 

series ..................................................................................................................................................................... 76 

Table 15: Preprocessing methodology of the MODIS and SENTINEL NDVI time series ........................................ 77 

Table 16: Lengths and VI based ETc ranges according to the crop development stages. ..................................... 82 

Table 17: The calculated R2 values for each crop development stage and the weighted average value for the 

entire period ......................................................................................................................................................... 83 

 

  



 H2020-SFS-2018-2020                                                                                                                              

8 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

List of figures 

Figure 1: Location of the study area of LiDAR mapping ....................................................................................... 14 

Figure 2: Elevation values based on 10x10 m spatial resolution databases (A – Relief map from LiDAR data B – 

Relief map from topographical map).................................................................................................................... 15 

Figure 3: Terrain model (A) and slope categories (B and C) of the studied grassland and the digital elevation 

model with runoff vectors and water catchments (arrows: run-off vectors; red contour: sub-catchments) (D) 16 

Figure 4: The map generated based on the reflected laser intensity (A) and the LiDAR-based DEM with IEW 

(blue contours) (B) ................................................................................................................................................ 16 

Figure 5: Location of inland excess water patches based on the digital elevation model derived from the 1:10 

000 topographic map ........................................................................................................................................... 17 

Figure 6: Wet sites (blue color) based on Sentinel data and largest IEW patches (black spots with numbers from 

1 to 10) based on LiDAR map................................................................................................................................ 18 

Figure 7: Location of Tyrnävä study area in the Oulu province of Finland ........................................................... 19 

Figure 8: Data availability details .......................................................................................................................... 20 

Figure 9: Flowchart of Water Balance Simulation (WBS) ..................................................................................... 21 

Figure 10: Range of Crop coefficient (Kc) considered for physiological growth stages of the potato crop .......... 22 

Figure 11: Soil pF Curve ........................................................................................................................................ 23 

Figure 12: Average monthly water availability conditions in the Tyrnävä area ................................................... 24 

Figure 13: Monthly drought classification based on SPEI in Tyrnävä (1984-2020) .............................................. 25 

Figure 14: Water shortage analysis based on the comparison of SPEI correlated with NDVI .............................. 25 

Figure 15: Total seasonal irrigation demand (ID) observed in the field from 2000 to 2020 ................................ 26 

Figure 16: Daily irrigation demand observed in the field for the year of (a) 2003, (b) 2006), (c) 2018, and (d) 

2019 ...................................................................................................................................................................... 27 

Figure 17: Total seasonal Drainage Demand (DD) observed in the field from 2000 to 2020 ............................... 27 

Figure 18: Available surface water resource y for the “Isosuo” field ................................................................... 28 

Figure 19: Smart water management solution for agriculture ............................................................................. 29 

Figure 20: Sampling strategy in the field .............................................................................................................. 31 

Figure 21: Total available water content (field capacity-wilting point) at the site in depth of 30 m ................... 32 

Figure 22: The generated finite element (FE) mesh of the model with the location of sampling rows (isometric 

view) ..................................................................................................................................................................... 32 

Figure 23: Time variable boundary conditions ..................................................................................................... 34 

Figure 24: ET0, Kc and ETc as a function of elapsed time after sowing during the time period investigated ........ 36 

Figure 25: Measured and predicted soil water content for the period from May 3, 2020 to July 6, 2020 for the 

Hungarian site ....................................................................................................................................................... 37 

Figure 26: Initial soil moisture content (field capacity) ranges in the FE mesh nodes with the location of 

sampling rows ....................................................................................................................................................... 37 

Figure 27: Water content in the soil as a function of time, when the initial soil moisture content is higher than 

0.3 (θaverage=0.3054) .............................................................................................................................................. 38 

Figure 28: Water content in the soil as a function of time, when initial soil moisture content is between 0.2 and 

0.3 (θaverage=0.2487) .............................................................................................................................................. 39 

Figure 29: Water content in the soil as a function of time, when θ<0.2 (θaverage=0.1691) ................................... 39 

Figure 30: Water fluxes through the boundaries (atmospheric and deep drainage) and the calculated water 

balance ................................................................................................................................................................. 40 

Figure 31: Cumulative water fluxes through the boundaries (atmospheric and deep drainage) ........................ 41 

Figure 32:  Lubnow River catchment outline and location of Lubnow village (Image source: Google Earth) ...... 45 

Figure 33: Numerical grid for the Lower Silesia case study site as currently implemented in HGS. The numerical 

grid is vertically exaggerated for a better visual presentation of elevational gradients and the location of 

ditches .................................................................................................................................................................. 46 

Figure 34: Comparison of subsurface saturation in the catchment on an arbitrarily chosen day (day No. 200 = 

18 July) .................................................................................................................................................................. 47 



 H2020-SFS-2018-2020                                                                                                                              

9 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

Figure 35: Comparison of monthly water balances of the three simulated scenarios. Illustrated are 

precipitation, discharge at the catchment outlet, and groundwater (GW) storage changes. Positive 

groundwater storage changes indicate net recharge, whereas negative GW storage changes indicate net GW 

exfiltration. Note that these numbers are indicative and expected to change with the upcoming refinement of 

the model. ............................................................................................................................................................ 48 

Figure 36: Determination coefficients of forecast versus reported wheat yield at a given time ......................... 52 

Figure 37: Yield prediction algorithms and NDVI and SAVI models ...................................................................... 52 

Figure 38: RMSE and NRMSE of predicted values versus reported wheat yield values ....................................... 53 

Figure 39: The accuracy of the predictions based on NDVI and SAVI ................................................................... 53 

Figure 40: Absolute and relative deviation values from officially reported wheat yields .................................... 54 

Figure 41: Differences between observed and predicted yield within wheat yield ranges for NDVI and SAVI ... 54 

Figure 42: Temmesjoki basin and its location and land cover .............................................................................. 58 

Figure 43: Crop production yield vs. Climatological Variables ............................................................................. 60 

Figure 44: Crop Water Stress Index ...................................................................................................................... 60 

Figure 45: Simplified overview of the crop evapotranspiration model ................................................................ 63 

Figure 46: Weather station located at Acqua Campus ......................................................................................... 67 

Figure 47: Experimental fields dedicated to the tests .......................................................................................... 68 

Figure 48: Calculated crop coefficients and their cumulative time series ............................................................ 72 

Figure 49: Calculated theoretical crop evapotranspiration .................................................................................. 73 

Figure 50: Estimated median type time series of the Leaf Area Index, for the Italian Field 8, in 2018 ................ 73 

Figure 51: Estimated Kc series compared to the FAO-56 theoretical Kc for Italian parcel No. 8 in 2018 ............ 74 

Figure 52: Comparison of crop evapotranspiration and its cumulative series based on the spectral indices 

analysed and theoretical models for Italian parcel No. 8 in 2018 ........................................................................ 74 

Figure 53: Cumulated water balance for the Italian Field 8, in 2018 ................................................................... 75 

Figure 54: Comparison of pixel-wise correlation coefficients by two different approaches:  A: Interpolated 

MODIS NDVI vs SENTINEL NDVI, B: Modelled MODIS NDVI vs SENTINEL NDVI ................................................... 77 

Figure 55: Interpolated MODIS pixel values to Sentinel pixel values – linear model: A: pixel-wise correlation 

between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of linear regression 

coefficient ’a’, D: spatial pattern of linear regression coefficient ’b’ ................................................................... 78 

Figure 56: Maps of interpolated MODIS pixel values to Sentinel pixel values – power model: A: pixel-wise 

correlation between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of power-

type regression coefficient ’a’, D: spatial pattern of power-type regression coefficient ’b’ ................................ 78 

Figure 57: Maps of modeled MODIS optimal time series to Sentinel pixel values – linear relationship: A: pixel-

wise correlation between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of 

linear regression coefficient ’a’, D: spatial pattern of linear regression coefficient ’b’ ........................................ 78 

Figure 58: Maps of modeled MODIS optimal time series to Sentinel pixel values – power-type relationship: A: 

pixel-wise correlation between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern 

of power-type regression coefficient ’a’, D: spatial pattern of power-type regression coefficient ’b’ ................ 79 

Figure 59: Correlation coefficients: MODIS-NDVI vs SENTINEL products: A: NDVI, B: LAI, C: NDWI, D: NDRE ..... 79 

Figure 60: Comparison of correlation coefficient histograms over the field ........................................................ 80 

Figure 61: Comparison of the spatial pattern of estimated water balance on A: 4th of July 2020; B: 15th of 

August 2020.; C: 13th of July 2021; D: 10th of September 2021 on the Nyírbátor site .......................................... 81 

Figure 62: Cumulative water deficit estimate by NDVI based crop evapotranspiration for 2020 ........................ 81 

Figure 63: Measured and simulated soil moisture contents for the Nyírbátor site in the vegetative period of 

2021 ...................................................................................................................................................................... 83 

 

  



 H2020-SFS-2018-2020                                                                                                                              

10 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

 

List of Abbreviations and Acronyms 

𝐐𝐨 volumetric flux per unit surface area 

𝐪𝐨 average surface water flow velocity 

1-D one-dimensional 

3D 3-dimensional 

Adj. R-sq same as R-squared with adjustment 

AVHRR Advanced Very High-Resolution Radiometer 

BBCH 
exact abbr. of ‘Biologische Bundesanstalt, Bundessortenamt und CHemische 

Industrie’ by which phenological phases are expressed 

CCD charge-coupled device 

CWSI Crop Water Stress Index 

DEM Digital Elevation Model 

DFE Degrees of Freedom error 

dpi dot per inch 

E1 Nash-Sutcliffe efficiency index 

elev. elevation 

EnKF ensemble Kalman filter 

EOV 
Egységes Országos Vetület (in Hungarian) (in English: Unified National Projection 

of Hungary) 

ESA European Space Agency 

ET evapotranspiration 

ET0 reference evapotranspiration 

ETc crop evapotranspiration 

F(x) particle size distribution 

FAO Food and Agriculture Organization 

fAPAR Fraction of Absorbed Photosynthetically Active Radiation 

GW groundwater 

HGS HydroGeoSphere 

HGS-PDAF HydroGeoSphere-Parallel Data Assimilation Framework 

I irrigation 

IEW inland excess water 

k conductivity 

Kc crop coefficient 

LAI Leaf Area Index 

LANDSAT Land Remote-Sensing Satellite 

LiDAR Light Detection and Ranging 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSI MultiSpectral Instrument 

NDRE Normalized Difference Red Edge 

NDREw Normalized Difference Red Edge for wheat 



 H2020-SFS-2018-2020                                                                                                                              

11 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

 

  

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NIR near infrared 

NPBR Normalized Ration Procedure between bands VV and VH polarization 

NRMSE Normalized Root Mean Square 

nRMSE normalized Root Mean Square Error 

NUT 2 
Nomenclature des Unités Territoriales Statistiques (in French) (in English: 

Nomenclature of Territorial Units for Statistics) – level2 

OLI operational land imager 

P precipitation 

PCHIP Piecewise Cubic Hermite Interpolating Polynomial 

PDAF Parallel Data Assimilation Framework 

R2, R-sq, R-

square 
Coefficient of Determination 

RMSE Root Mean Square Error 

RS Remote Sensing 

RS-based Remote Sensing based 

RWU root water uptake 

SAVI Soil Adjusted Vegetation Index 

SLA Specific Leaf Area 

SNAP Sentinel Application Platform 

SPEI Standardized Precipitation Evapotranspiration Index 

SPI Standardized Precipitation Index 

SPOT 
Satellite pour l'Observation de la Terre (in French) (in English: Satellite for 

observation of Earth) 

SSE sum of squared error 

SWIR short-wave infrared 

TIRS thermal infrared sensors 

USGS United States Geological Survey 

VI, VIs vegetation index, plural: vegetation indices 

VRE Vegetation Red-Edge 

WB water balance 

WD water deficit 

WF cumulative water fluxes 

WRF Weather Research and Forecast 

θ volumetric water content 

θp porosity  

ρB bulk density 

ρp particle density 

Ψm water retention 



 H2020-SFS-2018-2020                                                                                                                              

12 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

 

1 Introduction  

Due to the growth in global demand for food and the increasing pressure on agricultural ecosystems 

related to climate change, early and reliable information on crop production has become essential for 

decision-making in agricultural practice.  

Over the past decades, the variability of weather has increased in many regions of Europe, just like in 

other parts of the world. The impact of climate change on hydrological variables like precipitation, 

temperature and soil moisture is highly uncertain and depends on seasons and regions (Vautard et al., 

2013; Putnam and Broecker, 2017; Ruosteenoja et al., 2017). Most climate scenarios predict increased 

water scarcity in arid areas, such as Hungary. Although the annual precipitation trend remains very 

uncertain, the frequency of droughts has already increased significantly due to rising temperatures 

and the associated potential evapotranspiration. Reduced precipitation and soil moisture levels in the 

spring and summer due to climate change are expected to affect agricultural crop production even in 

northern Europe negatively (Rummukainen et al., 2004; Ruosteenoja et al., 2017). Summer drought 

has become a common and recurring phenomenon in Finland. When drought occurs at the water-

sensitive stages of crops, it leads to substantial (10 - 20 %) yield loss (Peltonen-Sainio et al., 2021). As 

a result, summer droughts are causing significant reduction in food production volumes. For example, 

in Finland, the drought in the summer of 2018 was observed to result in low grain yield 

(https://yle.fi/uutiset/osasto/news/10688762, last accessed on 19 September 2021).  

At the same time, the presence of excess water causes a growing challenge and a valid concern in 

agricultural production in Europe as well. In addition, inland excess water and drought often appear 

simultaneously in a year, which can also influence agricultural production negatively. Groundwater 

may play an important role in building resilience to hydrological extremes especially during summer 

drought. However, long-term dependence on groundwater for irrigation may have considerable 

adverse effects on environmental conditions.   

One of the measures to tackle the effects of drought and to secure sustainable food production by the 

avoiding of substantial yield losses is irrigation at the water-sensitive stage of crops. The reuse and 

improved use of drainage water for irrigation through improved drainage control could be an essential 

strategy to reduce yield losses during summer drought, as well as the loading of nutrients into surface 

water. Proper irrigation control requires real-time data about the agricultural field, the surrounding 

catchment and the condition of the crop so that water balance may be defined properly. There are 

several physically based hydrological models available for modelling, which can be operated at various 

scales. Irrigation is usually based on the measurement of the water content in soil or meteorological 

variables used to model or calculate evapotranspiration (Nagy - Tamás, 2009). In recent years, mobile 

meteorological stations and soil sensors have been employed to measure the meteorological 

conditions and water supply of plants in real time. Plant-based methods, such as the plant water stress 

index, represent a great potential for irrigation control, although the definition of reference or 

threshold values might be problematic (Jones 2004). The development of biomass monitoring tools 

helps with surveying the spatial variability of plants and plant biomass (Tsutsumi - Itano, 2005). 

Remote sensing based (RS-based) prediction models developed from vegetation indices have the 

potential to provide quantitative and timely information on crops for larger regions or even at the 

local farm scale. The first steps in quantitative hydrogeological modelling will also be presented. These 

models enable us to simulate water flow in both the surface and subsurface domain, as well as the 
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coupling between them, which makes it possible to manage surface and subsurface water resources 

jointly. The calibration of the model includes the elaboration of a conceptual model and the 

appropriate climatic and hydraulic boundary conditions. Based on observation data, model 

parameters such as hydraulic conductivity can be calibrated subsequently. At the current stage of the 

project, the elaboration of the conceptual model has been completed, and a preliminary sensitivity 

analysis concerning driving climatic factors and soil moisture dynamics has been carried out.  

In summary, the water balance modelling of agricultural sites and catchments, the enhanced use of 

drainage water for irrigation, and the fast, real-time monitoring of drought and inland excess water 

are essential for a better understanding of the soil–water–plant nexus and the ensuing improvement 

of irrigation scheduling practices. In this deliverable, a simple, flexible and eco-friendly approach is 

presented to reuse drainage water for irrigation through improved drainage control, which promotes 

a circular economy. The report also discusses the capabilities of remote sensing techniques in 

improving crop yield and monitoring with a view to supporting the farming community in preparation 

for future climate change scenarios. Moreover, quantitative hydrogeological modelling, various RS 

data, vegetation indices and modelling activities have also been assessed for the purpose of irrigation 

scheduling, however, their efficiency in estimating evapotranspiration needs further testing in WP5.  

 

2 The role of Lidar in mapping excess water risk 

Inland excess water (IEW) bodies are being globally threatened by ongoing urbanization, agricultural 

irrigation, environmental degradation and climate change (Vörösmarty et al., 2010). Due to climate 

change, extreme water management conditions (for instance inland excess water) have become a 

growing challenge and represent now a real concern for agricultural production in Europe as well. The 

Hungarian case study site is also affected by inland excess water every third year on the average. The 

formation of excess water is in part based on terrain characteristics, but soil compaction also makes a 

negative impact on infiltration, which in turn contributes to the formation of excess water. Though 

the site is not equipped with any variable rate irrigation system, it is important to delineate spots with 

the potential risk of excess water in general, since such spots should be irrigated at a lower intensity 

and with less water input. The mapping of excess water requires the application of a DEM with proper 

resolution or a DEM combined with RS data sources so that spots covered by excess water may be 

detected. For this reason, the goal was to assess the applicability of various digital elevation models 

in the mapping of inland excess water based on the example of the Hungarian case study site. The 

elevation models assessed in the current study are derived from conventional topographic maps, 

aerial laser scanning a. k. a. LiDAR and active satellite remote sensing by the SENTINEL 1 Synthetic 

Aperture Radar products, provided by the European Space Agency. 

2.1 Study site and methods 

The reference area is a grassland site of 15.6 hectares in the northeastern part of Hungary. Figure 1 

shows the spatial location of the area. Under the current research, IEW affected areas were identified 

by the processing of digital elevation models of different origins and characteristics.  

(1) In the case of DEM generated from analogue basic data, the processing steps comprised the 

scanning of the conventional topographical paper map at a resolution of 600 dpi and its 

georeferencing into the Unified National Projection of Hungary (in Hungarian: Egységes Országos 
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Vetület: EOV, EPSG:23.700) projection. Subsequently, a vector layer was created and contour lines 

were digitalised based on the topographical map. There was also a database compiled from height 

data. A total of 25.372 vertex points representing height data were used as an input and a 3D contour 

surface was generated with the kriging method. The areas susceptible to inland excess water were 

then marked based on the elevation model. 

 

Figure 1: Location of the study area of LiDAR mapping 

 

(2) The aerial LiDAR survey is the product of the cooperation between the Institute of Water and 

Environmental Management and Eurosense Ltd. The laser scan survey was carried out with the IGI 

LiteMapper system. The grassland was surveyed in March, i.e. at the beginning of the vegetation 

period and the lowest vegetation level, when excess water was mostly present at the site. All these 

conditions were optimal for the understanding of the topography of the areas and the evaluation of 

the differences in micro-relief. The area comprised 129,072,937 points in total. The resolution of LiDAR 

data points is 14.58 point/m2, thus they can be used to build high resolution models. The laser point 

cloud processed by photogrammetry was pre-processed with the software GlobalMapper. A 

preliminary elevation profile analysis was carried out in the software for the grassland. 

On the basis of LiDAR images, the maps of slope categories were prepared and finally the inland 

marshes were marked in the sample area. The elevation model based on high-resolution LiDAR data 

was analysed through steps similar to those used for processing the DEM based on analogous (so-

called traditional) data. After that, roads, canals and reservoirs were sorted out. In the next phase, 

run-off and accumulation relations were investigated on the basis of slope conditions. After this, the 

intensity values of the laser survey were examined for the purpose of mapping inland excess water. In 

the next step, the applicability of digital elevation models for mapping IEW was compared based on 

three different types of mapping, traditional and LiDAR images, as well as Synthetic Aperture Radar 

products. 

(3) Sentinel 1 data were downloaded for the grassland area from the website of the European Space 

Agency (ESA) (https://scihub.copernicus.eu/). Radar images (amplitude values) were processed in the 

software environment of the ESA Sentinel Application Platform (SNAP) 2.0. As a first step of pre-

processing, the radiometric calibration of the images took place to get the Sigma0_VV channel, then 

speckle filtering was done. It was followed by a geometric correction (range Doppler terrain 
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correction). Finally, a binary transformation was carried out on the basis of the histogram, where low 

values correspond to water, while high values represent non-water areas. Based on the histogram, 

the threshold to separate water from the land was determined to be 2.21 x 10-2. 

During segmentation, the following formula was used:  

255 ∗  (σ0VV < 2.21 𝑥 10
−2) 

The expression σ0VV<2.21 x 10-2 is interpreted as a logical value. Values less than 2.21 x 10-2 are true 

(represented with 1), whereas values higher than that are false (represented with 0). 

2.2 LiDAR in mapping excess water risk 

Firstly, the digital elevation models (DEM) produced from the digitization of analogous data and 

the aerial LiDAR were subjected to a comparative analysis on the relief of the grassland (Figure 2). The 

results calculated based on the 1:10 000 scale topographical map show that the risk of inland excess 

water is low, if only the elevation of the grassland is considered. In contrast to this, however, there 

were inland marshes visible in the grassland during site visits, which are also demonstrated in the 

aerial laser images. This can be explained in part by the soil and hydrological characteristics of the site, 

and the 10-meter resolution of the elevation model, which does not allow the monitoring of the micro 

relief.  

 

 

Figure 2: Elevation values based on 10x10 m spatial resolution databases (A – Relief map from LiDAR data B – Relief map 
from topographical map) 

The height difference in the area is 7.94 m according to laser data and 19.11 m according to 

conventional DEM (obtained by the digitising of analogous basic data). The information content of the 

relief map derived from topographical data is much more limited, thus the interpolator is smoothing 

the difference in the terrain, due to the low resolution of the 1:10 000 scale data sources (Figure 3/A).  

Schumann et al. (2008) compared the suitability of digital terrain models based on LiDAR, contour 

line map and SRTM in hydrological modelling. Based on their findings, they concluded that the DEM 

based on LiDAR was the best, followed by the SRTM and then the DEM based on contour 

lines/traditional maps.  
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The DEM and the slope category map, as well as the runoff map of the grassland with the 

catchments were also determined (Figure 3/D). The hill (sand dune) rises from the lowest spot of the 

area to a height of 5 meters and this elevation of the relief serves as a catchment border. On the basis 

of the runoff lines, the deeper accumulation cauldrons could pool water from high-intensity 

precipitation or snowmelt, hence, the intensity values of the laser survey were analysed. 

 

 

Figure 3: Terrain model (A) and slope categories (B and C) of the studied grassland and the digital elevation model with 
runoff vectors and water catchments (arrows: run-off vectors; red contour: sub-catchments) (D) 

 

 

Figure 4: The map generated based on the reflected laser intensity (A) and the LiDAR-based DEM with IEW (blue contours) 
(B) 
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Since the airborne LiDAR system used the infrared wavelength range for the measurements, it can 

be suitable for mapping potentially harmful excess surface water. During the selection of intensity 

values, 45 areas affected by harmful inland excess water were identified, representing almost 0.2 ha 

as a whole (Figure 4). Some areas were classified improperly in the sorting process (mainly the 

southern areas of a size of less than 15 m2) due to higher point density. After the sorting of these 

areas, no more than 13 larger and coherent areas affected by inland excess water could be found; the 

size of more than half of which was less than 100 m2, while that of the largest inland marsh was 512.5 

m2. 73 % of the inland water is found at low altitudes (151-154 m) in relatively flat areas. But the rest 

of the inland excess water spots are situated in higher elevation areas (155.81-157.37 m), in the top 

region of the sand dunes, which can probably be explained by soil compaction. 

Inland excess water patches were identified not only by LiDAR-based products, but also 

topographical map based DEM. In the grassland, no inland excess water patches could be identified 

according to the topographical map (Figure 5).  

Other research also concluded that LiDAR and high-resolution DEM could be used in hydrological 

sensitive areas. Yang et al. (2014) investigated the impact of a digital elevation model based on LiDAR 

on large-scale river basin modelling.  Their findings revealed that, in the field of hydrology and 

hydroinformatics, it could be better to use DEM derived from high-resolution LiDAR. Thomas et al. 

(2017) examined hydrological sensitive areas based on digital elevation models. The research found 

that 1-2 m is the best resolution for the analysis of micro topography. 

 

 

Figure 5: Location of inland excess water patches based on the digital elevation model derived from the 1:10 000 
topographic map  
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In this research, wet areas identified by Sentinel 1 data were also assessed in comparison to LiDAR-

based IEW areas (Figure 6). According to the Synthetic Aperture Radar data, wet area only covers 

LiDAR-based inland excess water patches number 5, 6 and 7 located in low relief areas (152.24-154.88 

m). However, other patches were not exactly matched, probably because the relatively coarse 10 m 

spatial resolution of the Sentinel 1 data resulted in the spectral mixing in pixels.  

  

Figure 6: Wet sites (blue color) based on Sentinel data and largest IEW patches (black spots with numbers from 1 to 10) 
based on LiDAR map 

Based on the DEM derived from LiDAR, inland excess water patches were analysed with the use 

of laser intensity values. In conclusion, from the data assessed, LiDAR data proved to be appropriate 

to map the micro-topographical differences and thus the IEW of a site precisely, while conventional 

topographic map-based DEM [due to its scale (1:10 000)] and Sentinel 1 [due to its coarse resolution] 

have certain limitations in modelling IEW at field scale. According to our findings, topography and 

associated runoff were the primary causes of the formation of IEW. 

3 The use of surface and groundwater for irrigation 

In Finland, irrigation is needed for growing some crops, such as potato, especially in dry years. In the 

coastal lowlands, where most of the agricultural areas are located, annual precipitation is relatively 

low and irrigation is beneficial for crop production. Irrigation is realized by the using of water from 

lakes and rivers, but due to the lack of surface water in some regions, farmers are also interested in 

using groundwater, especially as agricultural lands are located near or even on the top of aquifers in 

this coastal region. The objective of our study was to analyze water demand and irrigation scheduling 

and to assess the potentials for the use of surface and groundwater for potato cultivation. 

3.1 Study area and data 

The study area “Isosuo” (6.43 ha) is located in the municipality of Tyrnävä, 32 km southeast of the city 

of Oulu (between 64°45’21” N to 64°45’33” N Latitudes and 25°43’ 40” E to 25°43’0” E Longitudes) in 
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the North Ostrobothnia region of Finland (Figure 7). The Tyrnävä area has boreal or cold climate with 

long periods of sub-zero temperatures and deep ground frost during winter. The region is mostly 

covered by snow from late October until mid-April. May to September is the best period for potato 

production. Normally, farming operations start in late May depending on snow and frost conditions. 

Crop harvesting takes place in September. In the cropping period, the length of the daytime reaches 

nearly 24 hours. 

 

 

Figure 7: Location of Tyrnävä study area in the Oulu province of Finland 
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The municipalities of Tyrnävä and Liminka are important for potato cultivation on a regional, national, 

and EU scale alike. Seed potatoes are produced on ca. 700 hectares and food potatoes are produced 

on nearly 500 hectares on 28 seed potato farms and 21 food potato farms, respectively. These two 

municipalities produce around 70-75% of all Finnish seed potatoes, about 17-18 million kilograms in 

total, of which nearly 3-4 million kilograms are exported annually.  

The temporal resolution of hydrological and climatological data collected in the region are shown in 

Figure 8.  

 

Figure 8: Data availability details 

3.2 Methods 

3.2.1 Water balance 

Water balance calculations were used to assess irrigation needs. The average monthly water deficit 

and surplus presented was calculated with the following equation: 

± ∆𝑊 = 𝑃 − 𝐸𝑇0  

where P is the average monthly precipitation (mm/month), ET0 is the average monthly reference or 

potential evapotranspiration (mm/month) and ± ∆W is the average monthly water deficit (-ΔW) or 

surplus (mm/month) (+ ΔW).  

3.2.2 SPEI and NDVI 

The Standardized Precipitation Evapotranspiration Index SPEI (Vicente-Serrano et al. 2010a) was used 

to identify meteorological drought and to assess the anomalies of precipitation, temperature, and 

evapotranspiration. Daily precipitation, daily temperature and other climatic data were collected from 

the Finnish Meteorological Institute (FMI). Reference evapotranspiration (ET0 – also considered as 

potential evapotranspiration) was calculated by the ET0 calculator software (FAO, 2009b), which 

calculates ET0 using the FAO Penman-Monteith equation (Allen et al., 1998). The notation of Mustafa 

et al. (2017) was followed. 

𝐸𝑇0  =
0.408 ∆ (𝑅n − 𝐺) +  𝛾

900
𝑇 + 273 𝑢2(𝑒s − 𝑒a)

∆ +  𝛾(1 + 0.34𝑢2)
 

where ET0 is the reference evapotranspiration [mm day-1], 

Rn is the net radiation at the crop surface [MJ m-2 day-1],  

G is the soil heat flux density [MJ m-2 day-1],  

T is the mean daily air temperature at 2 m height [°C],  

u2 is the wind speed at 2 m height [m s-1],  
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es is the saturation vapour pressure [kPa],  

ea is the actual vapour pressure [kPa],  

es - ea is the saturation vapour pressure deficit [kPa],  

∆ is the slope vapour pressure curve [kPa °C-1],  

γ is the psychrometric constant [kPa °C-1]. 

Monthly SPEI index values were introduced along with the monthly Normalized Difference Vegetation 

Index (NDVI) values that were produced using the Google Earth Engine (GEE) platform. Three Landsat 

NDVI imageries (i.e. Landsat 8, 7, 5) available from January 1984 until December 2020 were combined 

to interpolate missing values using Harmonic modelling techniques. The values were further analysed 

to detect the influence of SPEI over NDVI during the time interval observed. 

3.2.3 Water Balance Simulation (WBS) 

In this section, the basic assumptions used to develop the Water Balance Simulation (WBS) are 

presented.  WBS provides the feasibility to simulate different lengths of crop growing seasons with a 

change in the number of days for each physiological stage of the potato crop. The crop growth period 

from 25 May to 25 September was considered as the longest possible crop growing season (124 days) 

in the field. The flowchart of the water balance simulation is shown in Figure 9.  

 

 

Figure 9: Flowchart of Water Balance Simulation (WBS) 
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Crop evapotranspiration (ETc) is calculated as a combination of ground surface evaporation and the 

transpiration of water from the plant tissues (Andales et al., 2011). It can be estimated from potential 

evapotranspiration (ET0) and crop coefficient (KC) as follows: 

𝐸𝑇𝑐 = 𝐸𝑇0 ∗ 𝐾𝑐  

where ET0 is estimated as follows: 

𝐸𝑇0 = 0.0023 ∗ (𝑇𝑚𝑒𝑎𝑛 + 17.8) ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) ∗ 0.5 ∗  𝑅𝑎  

where Tmax = daily maximum air temperature, (°C); Tmin = daily minimum air temperature, (°C); Tmean 

= mean daily air temperature (i.e., average of Tmax and Tmin), (°C); Ra = extra-terrestrial radiation, (mm 

day-1). 

The daily values of extra-terrestrial radiation (Ra) are usually available in MJ m-2 day-1. The equivalent 

evaporation values in mm day-1 were obtained by the multiplication of Ra with 0.408 (Allen et al., 

2007). Also, values of Ra vary with the location of the region under investigation on Earth. The 

following daily extra-terrestrial radiation values for the months of May to September were considered 

at 65° Latitude for the location of Tyrnävä (Table 1). 

The KC values vary with the plant growth and its physiological stages. The KC values as mentioned in 

Figure 10 were considered to calculate the potato water requirement under different physiological 

growth stages under different scenarios.  

We estimate the soil water storage using water retention curves (Figure 11). 

 

Table 1: Daily extra-terrestrial radiation for different months at 65° Latitudes (MJ m-2 day-1) 

Month Daily extra-terrestrial radiation for the Month (Ra), MJ m-2 day-1 

May 35.8 

Jun 41.3 

Jul 38.8 

Aug 29.7 

Sep 17.9 

 

  

Figure 10: Range of Crop coefficient (Kc) considered for physiological growth stages of the potato crop 

Initial stage 

Development Stage 

Kc 0.4 - 0.5 

Kc 0.85 - 0.95 

Kc 0.7 - 0.8 

Late-Season Stage 

Mid-Season Stage 
Kc 1.05 - 1.2 

Total 90 to 130 days 
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Figure 11: Soil pF Curve 

Table2: Different soil (water holding) properties considered in the development of Water Balance Simulation (WBS) 

Soil (water holding) properties Details 

Soil Structure Silt clay 

Depth of soil below ground level 1000 mm 

Volumetric soil moisture content at Field Capacity (FC) 496 mm/m 

Volumetric soil moisture content at Permanent Wilting Point (PWP) 250 mm/m 

Available Water Capacity (AWC = FC - PWP) 346 mm/m 

Maximum Allowable Depletion (MAD = 50% AWC) 173 mm/m 

Initial Water Storage = FC 496 mm/m 

 

The current setup of WBS calculates daily soil water storage (SWS) as follows: 

𝑆𝑊𝑆(𝑡) = 𝑆𝑊𝑆(𝑡−1) + 𝑃𝑑(𝑡) + 𝐼𝐷(𝑡) − 𝐸𝑇𝑐(𝑡) − 𝐷𝐷(𝑡−1)  

where SWS(t) = Soil water storage at time (t); SWS(t - 1) = Soil water storage at time (t-1); 𝑃𝑑(𝑡)  = 

Average daily rainfall at time (t); 𝐼𝐷(𝑡) = Irrigation Demand in the field at time (t); 𝐸𝑇𝑐(𝑡)  = Crop 

evapotranspiration at time (t); 𝐷𝐷(𝑡−1) = Drainage Demand in the field at time (t-1). 

The Fraction available water (FAW) is: 

𝐹𝐴𝑊(𝑡) =
(𝑆𝑊𝑆(𝑡) − 𝑃𝑊𝑃)

𝐴𝑊𝐶
  

where FAW(t) = Fraction available water at time (t); SWS(t) = Soil water storage at time (t); PWP = Soil 

water storage at time; AWC = Available water capacity, 

and the soil water depletion (SWD): 

𝑆𝑊𝐷(𝑡) = 𝑆𝑊𝑆(𝑡) − 𝐹𝐶  

where 𝑆𝑊𝐷(𝑡) = Soil water depletion at time (t);  𝑆𝑊𝑆(𝑡) = Soil water storage at time (t); FC = Field 

capacity of soil. 
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In the end, the water balance situation in the field based on the crop water requirement or soil water 

storage conditions is: 

𝐼𝑓 (𝑆𝑊𝐷(𝑡−1) + 𝐸𝑇𝑐(𝑡) + 𝐷𝐷(𝑡−1) − 𝑃𝑑(𝑡)) > 𝑀𝐴𝐷 

Then, 𝐼𝐷(𝑡) = 𝐸𝑇𝑐(𝑡) −  𝑃𝑑(𝑡) 
 

where 𝑆𝑊𝐷(𝑡−1) = Soil water depletion at time (t-1); 𝐸𝑇𝑐(𝑡)  = Crop evapotranspiration at time (t); 

𝐷𝐷(𝑡−1) = Drainage Demand in the field at time (t-1); 𝑃𝑑(𝑡) = Average daily rainfall at time (t); MAD = 

Maximum Allowable Depletion; 𝐼𝐷(𝑡) = Irrigation Demand in the field at time (t) 

and:  

𝐼𝑓 (𝑆𝑊𝐷(𝑡)  > 𝐹𝐶 

Then, 𝐷𝐷(𝑡) = 𝑆𝑊𝐷(𝑡) − 𝐹𝐶 
 

where 𝑆𝑊𝐷(𝑡) = Soil water depletion at time (t); FC = Field capacity of soil; 𝐷𝐷(𝑡) = Drainage Demand 

in the field at time (t). 

3.3 Results  

3.3.1 Annual water balance 

The monthly average water balance calculation shows high evapotranspiration in summer months 

with a deficit in water (Figure 12). Evapotranspiration drops significantly during the winter months 

(first three and last three months of the year). From the month May onwards, monthly average 

potential evapotranspiration is larger than monthly average rainfall, therefore water deficit increases 

from this month on as shown in the figure (Figure 12). From the month of September, evaporation 

declines, water is in surplus and drainage is needed. 

 

Figure 12: Average monthly water availability conditions in the Tyrnävä area 

3.3.2 SPEI and NDVI  

SPEI-based drought classification shows that there have been no extreme drought or wet periods 

observed in the region since 1984 (Figure 13). However, multiple severe and moderate droughts were 

observed and drought frequency (negative pulse of SPEI) has increased in the last decade. 
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Figure 14 shows the combined map of SPEI and NDVI. This chart reveals that severe drought occurring 

in the cropping season has a negative impact on NDVI values. For example, the lower NDVI values in 

1992 and 1998 were caused by extreme and severe droughts in these years. Similarly, severe and 

extreme wet conditions during the cropping season also influence NDVI values negatively. For 

example, the lower NDVI value in 2004 was attributable to the extremely wet condition in that year. 

This indicates that supplemental irrigation would have been needed in 1992 and 1998 and drainage 

should have been provided for in 2004. Drought frequency has increased recently, therefore irrigation 

would have been advisable in 2018 and 2019. This means that the occurrence of wet and dry periods 

on the map displaying monthly SPEI and NDVI values also clearly indicates the intervals when there is 

a need for irrigation (e.g. 2006, 2018 and 2019) or drainage (e.g. 2004) (Figure 16). Year 2004 

represents significant water surplus, whereas the period of 2018-2019 e.g. represents water shortage. 

Accordingly, both optimal irrigation and drainage management are essential to secure agriculture in 

this area.  

 

 Figure 13: Monthly drought classification based on SPEI in Tyrnävä (1984-2020) 

 

Figure 14: Water shortage analysis based on the comparison of SPEI correlated with NDVI 
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3.3.3 Water Balance Simulation (WBS) 

Water balance simulation was used to estimate irrigation and drainage demand during cropping 

seasons from 2000 to 2020 (Figure 15). Based on WBS, irrigation was only required in 20% of the years 

(2003, 2006, 2018 and 2019), which indicates that drainage management is more important than 

irrigation in this area. The estimated volumes of irrigation demand for all crops in the field in years 

2003, 2006, 2018 and 2019 were 2402, 7720, 963 and 807 m3, respectively.  

To provide a better understanding of irrigation demand during the dry years of 2003, 2006, 2018 and 

2019 in more detail, daily WBS was also carried out (Figure 16). The demand for irrigation was 

observed to be the most substantial in August, during the mid-season stage of the potato, i.e. at the 

stage of flowering and complete crop yield development.  

The WBS shows that the field required drainage during the crop growing seasons in 81% of the years 

(17 out of 21 years) (Figure 17). The volume of annual drainage varied between 0 to 9000 m3 and mean 

annual drainage was about 2793.22m3 (Figure 17). Therefore, a comparison between the results 

produced for irrigation demand (ID) (Figure 15) and drainage demand (DD) (Figure 17) in the study 

area indicates that the management of drained water is more crucial than irrigation.  

 

Figure 15: Total seasonal irrigation demand (ID) observed in the field from 2000 to 2020 
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(c)  

(d)  

Figure 16: Daily irrigation demand observed in the field for the year of (a) 2003, (b) 2006), (c) 2018, and (d) 2019 

 

Figure 17: Total seasonal Drainage Demand (DD) observed in the field from 2000 to 2020 

3.4 Discussion 

3.4.1 Available water resources for irrigation 

Based on WBS results, water surplus dominates over water deficit in Tyrnävä. The major source of 

surface water resource in the field “Isosuo” is the river Tyrnäväjoki. As shown in Figure 18, the river 

runs southwest of the field, at a distance of nearly 4-6 km (by road).  
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Figure 18: Available surface water resource y for the “Isosuo” field 

In addition to the available surface water in the vicinity of the field, deep or shallow groundwater 

could also be an alternative for irrigation in the region, as an aquifer is found below the field. The field 

“Isosuo” is equipped with a controlled subsurface tile drainage system around 1 m below ground level 

to keep groundwater level below 1 m and provide proper soil-air environment for healthy crop root 

development and enhanced crop yield in the field. 

The controlled drainage well in the drainage system can be raised or lowered to influence shallow 

groundwater level and soil moisture. In this way, groundwater levels can be managed under the field 

to provide soil water to the crop. The method is being tested in the Wateragri project. During summer 

drought periods, water availability in the field remains a major challenge.  

In general, deep groundwater from aquifers is not used for irrigation in Finland, but farmers in the 

Tyrnävä and Liminka area are interested in the use of these water resources. Deeper groundwater 

could be an alternative for irrigation, but requires cost-benefit analysis and sustainability assessment. 

Long-term dependence on groundwater for irrigation may have significant adverse effects on 

environmental conditions, which also need to be taken into consideration. 

3.4.2 Proposed alternative solution 

At the moment, there are two controlled drainage wells operated on the north-western boundary of 

the study field. These wells control drainage from the field as a whole and when they are closed, 

drainage stops. In Wateragri, we considered the optimal use of these wells for irrigation. As an 

alternative method, we also investigate the possibility the collection of runoff water for later reuse 

for irrigation. 

Figure 19 illustrates our proposed alternative solution to reuse drainage water for irrigation. The 

system will be assessed with an upgraded version of the currently discussed Water Balance Simulation 

(WBS) model, under different work packages of this project (to be discussed in future deliverables). 

We aim to reduce yield losses during summer drought and reduce the loading of nutrients into surface 

water by means of improved drainage control. 

The application of controlled drainage is outlined in Figure 19. Rainfall and temperature data 

forecasted for days 1-10 are used as initial input. Forecasted temperature is used to estimate daily 

ET0. Considering 𝐾𝑐 (plant growth stage) and forecasted rainfall, soil moisture will be estimated using 
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WBS. After the running of the WBS, tentative irrigation or drainage demand values can be calculated, 

which will help farmers with implementing optimal irrigation or drainage management. For instance, 

if the field has sufficient water at the moment, but there is no rainfall forecasted for the next ten days, 

then, as discussed earlier in the report, farmers can raise the drainage system to keep soil moisture 

near to the root zone. On the contrary, if an extreme rainfall event is forecasted, drainage can be 

allowed by the lowering of the water level in the drains. 

 

Figure 19: Smart water management solution for agriculture 

In the proposed alternative solution, excess water drained during heavy rainfall could be stored in a 

buffer pond (constructed wetland) or an elevated storage tank. The drainage ditch beside the field 

would be used as a buffer pond with a V-notch or rectangular notch. During summer drought periods, 

the water stored in the buffer pond or elevated storage tank could be used for irrigation. This would 

also help overcome any possible uncertainty in the weather prediction. A solar pump could be applied 

to store drained water into an elevated tank. The water stored in the elevated tank could be used for 

irrigation by gravity flow. In this way, the proposed approach also promotes the circular economy in 

agricultural water management and optimizes the water-energy-food nexus. 
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4 Hydrological modelling to support irrigation 

In WATERAGRI, several kinds of numerical models are part of the framework and used in the 

evaluation of WATERAGRI solutions. Certain numerical models are capable to solve complex water 

balance calculations and/or the flow field for a given hydrogeological setting considering various local 

conditions including water and land use scenarios. Choosing the best model often requires finding a 

balance between the problem to be solved, modelling needs and the data available. Depending on the 

problem at hand, model simulations are performed according to different principles and with 

consideration to various spatial and temporal scales. Hydrological models integrate meteorological 

data and responses in soils and catchments. These models can be based on physical laws, conceptual 

or entirely data driven. When dealing with nutrients or pollutant transport in general, pollutant 

characteristics must also be known, and models typically require information on substance reaction 

rates such as decay. 

4.1 Hydrus-based modelling of water fluxes and root water uptake 

in a maize cultivated area of Nyírbátor for the development of 

precision irrigation scheduling  

The Hydrus program is a finite element model for simulating the two- and three-dimensional 

movement of water, heat and multiple solutes in variably saturated media. The Hydrus program solves 

the Richards equation for saturated-unsaturated water flow and convection-dispersion type equations 

for heat and solute transport numerically. The flow equation incorporates a sink term to account for 

the water uptake by plant roots. The heat transport equation considers movement by conduction, as 

well as convection with flowing water.  

4.1.1 Study site and description of the model 

The Hungarian study area is situated in the Pannonian region, on the edge of a moderately warm and 

moderately cool climate belt, in the Norther Great Plain region in Szabolcs-Szatmár-Bereg county, next 

to the town of Nyírbátor (47°48'18.60"N, 22° 9'43.89"E). The case study site is located in a nitrate-

sensitive area (based on European guidelines) and owned by the private company Bátortrade Ltd. The 

case study site is an irrigated arable land of 87.5 ha equipped with a linear irrigation system. The maize 

produced on the field is used to feed animals in the nearby farm. The case study site situated at the 

alluvial cone plain is covered mainly with quicksand. Nowadays, its active water network is sparse and 

the horizontal fragmentation of the landscape is low, due to melioration and drainage activities 

performed in the previous century. 
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The study area is situated on the edge of a moderately warm and moderately cool climate belt. The 

average number of yearly sunshine hours is between 1900 and 2000 (800 hours in the summer, 170 

hours in the winter) based on National Weather Service data (www.omsz.hu). The average annual 

temperature is 9.6 ℃ and 16.6 ℃ for the summer half year. On the hottest summer days, the daily 

maximum temperature can exceed 34 ℃. The average minimum temperature of the coldest winter 

days is below -17.0 °C. The annual rainfall is 570-600 mm, and there is about 350-360 mm rainfall in 

the summer half-year. The most common wind directions are northeast and southeast, with an 

average speed of 2.5 m/s. In summary, the climate of the Southeast Nyírség region is suitable for not 

very heat and water intensive agricultural crop production. 

As part of our investigation, there was precision grid-based soil sampling carried out on an agricultural 

field (85.5 ha). Different databases and maps (for example Hungarian soil database, digital aerial photo 

archive, geological map by the Mining and Geological Survey of Hungary) were used to elaborate the 

soil sampling strategy (Figure 20). 

 

 
Figure 20: Sampling strategy in the field 

 

Core soil samples in two layers (30 cm and 60 cm) were taken at 102 points, representing 1.19 samples 

/ ha on average. The soil texture of each sample was determined (> 2 mm, 200 µm - 2 mm, 50-200 

µm, <50 µm), as well as soil water retention parameters like saturated water (SW), field capacity (FC), 

wilting point (WP), total available water content (TAW=FC-WP) and gravitational water content. The 

total available water in the upper layer (30 cm) is between 4.01-25.85 % with an average of 11.14±4.12 

%. In the deeper layer, the total available water content is between 1.95-15.94 % with an average of 

10.78± 4.55 % (Figure 21). 

The aim of the model is to determine the water balance (WB) of the investigated area where maize is 

cultivated without any irrigation, alongside the cumulative water fluxes (WF) through the boundaries. 

The model considers a source term of water like precipitation (P) or irrigation (I) for the top 

(atmospheric) boundary of the domain, as well as a deep drainage boundary at the bottom. The length 

(x) and the width (y) of the transport domain are 2,200 m and 415 m, respectively (Figure 22), covering 

an area of 875,793 m2 (~87.5 hectares). 
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Figure 21: Total available water content (field capacity-wilting point) at the site in depth of 30 m 

The depth (z) of the transport domain is 1 m. The soil physical properties previously measured and 

calculated in 2 different depths (30 cm and 60 cm from the soil surface). Hydraulic conductivity (k), 

water retention (Ψm), bulk density (ρB), particle density (ρp), particle size distribution (F(x)) and 

porosity (θp) are used as model input. The model also simulates root water uptake (RWU) and 

evapotranspiration (ET), including the theoretical crop-specific transpiration (ETc) by maize. Based on 

the 3D soil physical model, water deficit (WD) can be calculated easily for the time period between 3 

May 2020 and 10 September 2020 (from sowing to harvesting) in the modelled area of Nyírbátor. 

 

Figure 22: The generated finite element (FE) mesh of the model with the location of sampling rows (isometric view) 

 

4.1.2 Setup and parameterization of the Hydrus model 

Domain type and units – The 3D - general geometry was selected for this model. 

 



 H2020-SFS-2018-2020                                                                                                                              

33 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

Main processes and add-on modules – The following main processes were selected: water flow, solute 

transport and root water uptake. The solute transport module has not been activated yet (in the 

current model scenario, the solute concentration considered to be 0), however, our aim in the near 

future is to do an irrigation simulation where the solute transport of plant conditioners sprinkled with 

irrigation water could also be investigated. 

 

Time information – The modelling timeframe is 131 days, elapsed from the sowing to the harvesting 

of maize (3 May 2020 – 10 September 2020), and the number of time-variable boundary records is 

also 131. Thus, there is a specified time-variable boundary record for each day over the investigated 

time period. 

 

Soil hydraulic model – The van Genuchten-Mualem soil hydraulic model was used with no hysteresis. 

The shape of water retention curves can be characterized by several models (Buckingham, 1907), one 

of those most often used is the van Genuchten model (Eq. 1) (van Genuchten, 1980): 

 

 θ(ψ)=θr+
θs-θr

[1+(α|ψ|)
n
]
1-

1
n

  

where, 

θ(ψ) is the water retention curve [L3·L−3], 

|ψ| is suction pressure ([L]), 

θs is saturated water content [L3·L−3], 

θr is residual water content [L3·L−3], 

α is related to the inverse of the air entry suction, α>0 ([L−1] or [cm−1]), and 

n is a measure of the pore-size distribution, n>1 [-]. 

 

Based on this parametrization, a prediction model for the shape of the unsaturated hydraulic 

conductivity – saturation – pressure relationship can be developed. 

 

Water Flow Parameters – The appropriate soil physical parameters were predicted based on the 

average values of the major soil physical properties measured in 2 different depths, such as particle 

size distribution, hydraulic conductivity and bulk density, with the Rosetta Lite v1.1. in-built module 

of the Hydrus software. The input data for the prediction are indicated in Table 3. 

 
Table 3: The average results of major soil physical properties used in the Rosetta Lite v1.1. in-built module of the Hydrus 

software 

Soil physical properties 

Hydraulic 

conductivity,    

k [m·s-1] 

Bulk 

density,       

ρB [g·cm-3] 

Bulk density, 

ρp [g·cm-3] 

Porosity,   

θp [V/V%] 

USDA soil 

classification 

based on PSD 

analysis 

Sand Silt 

Average (30 cm) 2.886·10-6 1.562 2.541 38.52 94.35% 5.65% 

Average (60 cm) 2.890·10-6 1.577 2.558 38.32 95.60% 4.40% 

Average total 2.888·10-6 1.569 2.550 38.42 94.98% 5.02% 
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Root Water Uptake Parameters – The database of various crop types is included with the Hydrus 

software. From this database the “Corn” entity was selected (Wesseling, 1991). Table 4 indicates the 

parameters used to calculate the RWU parameters. 

 
Table 4: The parameters used to calculate the actual value of RWU 

Parameter Value Description 

P0 -0.15 Value of the pressure head [L] below which roots start to extract water 

from the soil (h1). 

Popt -0.3 Value of the pressure head [L] below which roots extract water at the 

maximum possible rate (h2). 

P2H -3.25 Value of the limiting pressure head [L] below which roots can no longer 

extract water at the maximum rate (assuming a potential transpiration 

rate of r2H) (h3hight). 

P2L -6 As above, but for a potential transpiration rate of r2L (h3low). 

P3 -80 Value of the pressure head [L] below which root water uptake ceases 

(usually taken at the wilting point) (h4). 

r2H 0.005 Potential transpiration rate [LT-1] (currently set at 0.5 cm/day) (Tp). 

r2L 0.001 Potential transpiration rate [LT-1] (currently set at 0.1 cm/day) (Tp). 

 

Temporally Variable Boundary Conditions – Daily precipitation and ET0 (reference 

evapotranspiration) values were calculated in external applications, and set up based on the 

measurements of a hydro-meteorological station (DavisMET) located nearby. The surface length 

associated with transpiration was 875,793 m2 according to the geometrical parameters of the 

transport domain (Figure 23). 

 

 
Figure 23: Time variable boundary conditions 

 

The crop evapotranspiration (ETc) was calculated based on the daily values of ET0 (Allen et al., 1998) 

and Kc (crop coefficient). BBCH and LAI data provided by Vultus were used for the determination of Kc. 
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As a first step of the process, the entire period investigated was divided into 4 intervals with 

consideration to the crop development stages according to the suggestions of FAO (Allen et al., 1998). 

Table 5 summarizes the major parameters of the 4 development stages and their lengths for the year 

2020. 

 
Table 5: Kc and ETc ranges according to the crop development stages 

Stage Indicators 
Time period,              

T [days] 

Kc range, 

[-] 

ETc range, 

[mm·day-1] 

Initial 

Planting date (or the start of 

new leaves for perennials) to 

10% ground cover 

3 May 2020 

– 

13 June 2020 

0.4-0.8 0.25-4.44 

Crop 

development 

10% ground cover to effective 

full cover, about 60-70% 

coverage for tree crops and 

70-80% for field and row crops 

14 June 2020 

– 

23 July 2020 

0.8-1.2 1.06-6.34 

Mid-season 

Effective full cover to 

maturity, indicated by 

yellowing of leave, leaf drop, 

browning of fruit 

24 July 2020 

– 

22 August 2020 

1.2-0.9 0.93-5.78 

Late-season 

Maturity to harvest: the Kc 

value can be high, if the crop is 

irrigated frequently until fresh 

harvest or low, if the crop is 

allowed to dry out in the field 

before harvest 

23 August 2020 

– 

10 September 2020 

0.9-0.6 0.89-3.35 

 

Figure 24 represents the parameters Kc, ET0 and ETc considering the crop development stages over the 

investigated time period. For the analysis of the temporal dynamics of the crop coefficient, the curve 

estimation procedure was used based on the data of the whole time period. The software Grapher 17 

was used for the estimation of regression models. It was found that the Kc can be well described by a 

polynomial fitting (Y=0.3116+0.0056·X+0.0002·X2-2.0859·10-6·X3; R2=0.95). 
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Figure 24: ET0, Kc and ETc as a function of elapsed time after sowing during the time period investigated  

 

The peak value for the crop coefficient (Kc=1.2) can be observed around the boundary line between 

the crop development stage and mid-season stage 82 days after sowing, where the crop 

evapotranspiration value is 5.64 mm. 

 

FE-Mesh parameters – The finite element mesh was generated by the unselecting of the automatic 

targeted FE size option and the using of 25.00 m instead. 

 

Initial Conditions: Water Content – The initial water content was set up to field capacity according to 

the water retention curves measured and calculated for each sampling point.  

 

 

Boundary Conditions – On the top of the simulation domain, an atmospheric boundary condition was 

applied, whereas on the bottom of the domain, a deep drainage condition was applied, corresponding 

to the groundwater level at 140 cm. Groundwater level data originated from a groundwater 

monitoring well, located at a distance of 1.9 km from the investigated area. 

 

Validation of the model – The model validation was carried out for the first 65 days after sowing. Soil 

moisture data were collected from the Hungarian operational drought and water scarcity 

management system at the depth of 10 cm. The closest monitoring station (Nyírvasvári) was selected, 

which is located at 1.3 km from the cultivation area. There were some model modifications made, like 

the removal of the corn from the model, and the ETc values were substituted with ET0 values, so that 

the model and measured soil moisture content data could be compared (Figure 25). It is obvious, that 

there is a good correlation between the predicted and measured soil moisture content over the 

investigated time period (R2=0.91), which means that the model built in Hydrus is applicable for 

modelling of water content changes at the case study site. 
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Figure 25: Measured and predicted soil water content for the period from May 3, 2020 to July 6, 2020 for the Hungarian site 

4.1.3 Results of the model 

 

4.1.3.1 Water content distribution in the soil as a function of time 

In order to get a comprehensive view about the soil water content distribution of the area, the initial 

water content (field capacity) values were categorised, listed to 3 groups and marked with different 

colours (Figure 26). 

 

 
Figure 26: Initial soil moisture content (field capacity) ranges in the FE mesh nodes with the location of sampling rows 

 

The average values related to the 3 initial water content ranges are: 

 30.54%, when θ≥0.3, 

 24.87%, when 0.3>θ>0.2, 

 16.91%, when θ≤0.2. 
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Using these 3 average initial water content values, the water contents have been predicted over the 

investigation period as a function of time. It can be seen in Figure 27, 28, 29 that if the initial water 

content is lower, the depletion of the water is faster in the soil. Moreover, all of the 3 average initial 

water content values reach the wilting point within 40 days without any irrigation and remain constant 

until the 10th of September 2020. 

 

 
Figure 27: Water content in the soil as a function of time, when the initial soil moisture content is higher than 0.3 

(θaverage=0.3054) 

 

The difference between the field capacity (30.54%, 24.87% and 16.91%) and the wilting point (7.9%) 

gives us the available soil moisture range, which is 22.64%, 16.97 and 9.01% considering the initial 

field capacity ranges. Based on practical experiences, irrigation should be carried out when the 

available moisture range drops to 60%, which corresponds to soil moisture contents of 18.32%, 

14.92% and 10.15%, respectively. 

 

The model results showed that irrigation should be carried out: 

 from 22 May 2020, when the initial water content is higher than 0.3,  

 from 16 May 2020, when the initial water content is between 0.2 and 0.3, 

 from 12 May 2020, when the initial water content is less than 0.2. 
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Figure 28: Water content in the soil as a function of time, when initial soil moisture content is between 0.2 and 0.3 

(θaverage=0.2487) 

 

 
Figure 29: Water content in the soil as a function of time, when θ<0.2 (θaverage=0.1691) 

 

It can also be seen that incoming precipitation is not sufficient to supplement the water content in the 

soil to the optimal soil moisture range. Thus, it can be concluded that the water balance is negative in 

this area for all initial water content ranges. 

 

4.1.3.2 Water fluxes through the boundaries (atmospheric and deep drainage) and 

the water balance as a function of time elapsed after sowing 

In Figure 30, the water fluxes at the upper and lower model boundary are given as a function of time 

elapsed after sowing. After heavy precipitation events (e.g. 16 June 2020 – P=47.8 mm or 3 July 2020 

– P=62.2 mm), elevated deep drainage can be observed in the model a few days after the heavy 
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rainfall. Root water uptake increases as well, if a higher amount of precipitation is coming. The water 

balance is negative almost over the entire time period, except when precipitation level is high enough 

to balance it. Based on the hydro-meteorological data of the last year, the highest precipitation events 

occurred in the crop development stage, but evapotranspiration was also higher in this stage as a 

consequence of higher radiation and elevated temperatures. 

 

 
Figure 30: Water fluxes through the boundaries (atmospheric and deep drainage) and the calculated water balance 

 

4.1.3.3 Cumulative water fluxes (atmospheric and deep drainage) and the water 

balance 

Cumulative water fluxes are presented in Figure 31. Infiltration takes on positive values, because the 

incoming precipitation increases the water content in the soil. Deep drainage, evapotranspiration and 

root water uptake have negative values, because they decrease the water content in the soil. The so-

called “Atmospheric” curve represents the balance between infiltration and evapotranspiration. By 

the end of the investigated time period, total infiltration was 267,000 m3, while evapotranspiration, 

root water uptake and deep drainage totalled to 321,000 m3, 145,000 m3 and 72,000 m3, respectively. 

Notice that ET includes RWU. Water balance can be calculated for the 87.5-hectare area from 3 May 

2020 to 10 September 2020 in awareness of the exact values of these fluxes. 
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Figure 31: Cumulative water fluxes through the boundaries (atmospheric and deep drainage) 

 

 WB=I-(ET (includes RWU)+DD)  

 

 WB=267,000 m3-(321,000 m3+72,100 m3)  

 

 WB=-126,100 m3  

 

In conclusion, the model results reveal a lack of 126,100 m3 of water in the investigated agricultural 

land. Considering, that the area of the site is 875,793 m2, the specific water deficit (WD) is 0.143 

m3/m2, which is equal to 143.9 mm/m2 or 143.9 l/m2 or 1439 m3/ha. 

4.2 HydroGeoSphere based modelling 

In contrast to simple conceptual water balance and 1-D soil column models, fully coupled and fully 

distributed surface water - groundwater flow models as employed in WP7 are capable of considering 

almost all components of the water cycle explicitly and in an integrated way. These models can be 

used to evaluate how drainage systems can be optimized, when and how much irrigation to apply, 

and how ideal soil moisture conditions for different crop types can be maintained. This can be 

achieved either through climate and land use change scenario simulations, which are essentially 

predictions into the far future, or through quasi-real-time modelling based on data assimilation, which 

allows the prediction of soil moisture or groundwater levels in an agricultural field to be predicted for 

two weeks ahead, similarly to short-term weather forecasts. That information can then be used by 

farmers to manage irrigation and drainage scheduling, but potentially also for estimations of crop 

development. In the case of ParFlow-CLM, predictions of carbon and nitrogen stocks, as well as crop 

yield could also be made, but these features are currently in a development phase (also within 

WATERAGRI). Different methods to test and improve model accuracy and reduce error exist, and they 

are typically part of the numerical modelling workflow meant to solve a practical problem. These form 
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a principal part of WP7, for which the physically based and fully coupled surface water-groundwater-

vegetation models are developed.  

We shall report below on the current state of progress of the HydroGeoSphere based modelling for 

the Lower Silesia case study site. The state of progress will be illustrated on a simple climatic scenario 

analysis. The model will later be used for data assimilation experiments, which will allow real-time 

predictions of water availability and crop water demands. The results and outcomes of the modelling 

will be reported fully as part of the deliverables of WP7. 

 

4.2.1 Study site and methods 

4.2.1.1 The HydroGeoSphere Numerical Flow model 

HydroGeoSphere (HGS) (Aquanty, 2021; Brunner - Simmons, 2012; Schilling et al. 2018) is a physically-

based and fully integrated surface water – groundwater - vegetation flow model that has been 

successfully applied in many different hydrogeological contexts and at many different spatial and 

temporal scales. HGS can explicitly simulate the interactions between groundwater, surface water and 

vegetation under consideration of variably saturated subsurface flow and complex heterogeneous 

subsurface properties (e.g, Ala-Aho et al. 2017; Schilling et al. 2014, 2017; Tang et al. 2018). HGS can 

also consider fully explicit contaminant or nutrient transport, as well as irrigation and tile drainage in 

agricultural contexts (e.g., Bonton et al. (2012), De Schepper et al. (2017)). HGS has recently been 

coupled to the Weather Research and Forecast (WRF) model for the integrated simulation of 

atmosphere, surface, and subsurface interactions (Davison et al., 2015) and has been used for data 

assimilation experiments using the ensemble Kalman filter (EnKF) (Kurtz et al., 2017; Tang et al., 2017, 

2018). As part of WP7, HGS will be coupled to the extremely powerful Parallel Data Assimilation 

Framework (PDAF) (Nerger et al., 2013), which will enable data assimilation with several state-of-the-

art data assimilation algorithms. PDAF is also the data assimilation component of TerrSysMP-PDAF 

(Kurtz et al., 2016), which is the numerical model and data assimilation platform that is used by FZJ 

for the simulation of several other case study sites in WATERAGRI. 

In HGS, the surface and subsurface are represented by two domains, the overland domain and the 

porous medium domain. All of the following information on HydroGeoSphere has previously been 

published in the HGS manual (aquanty.com), and is fully based on these sources (Schilling et al., 2018, 

2020).  

Surface water flow, i.e. flow within the overland domain, is represented with the following diffusion-

wave approximation of the two-dimensional Saint-Venant equation: 

 

𝜕𝜑𝑜ℎ𝑜
𝜕𝑡

= −∇ ∙ 𝑑𝑜𝐪o − 𝑑𝑜Γex ± 𝑄𝑜 

 

where ∇ is the two-dimensional differential operator, 𝑑𝑜 [m] is the depth of surface water (excluding 

rill storage height that represents micro-topography), 𝜑𝑜 [-] is the surface flow equivalent porosity 

that accounts for microtopography, ℎ𝑜 [m] is the total head (≡  𝑧 + 𝑑𝑜) for given water depth 𝑑𝑜 and 

elevation 𝑧, 𝐪o [m/d] is the average surface water flow velocity, Γex [m/d] is the volumetric rate of 

fluid exchange between the surface and subsurface domains per unit surface area (positive when 

water flows from the surface to the subsurface), and 𝑄𝑜 [(m3/d)/m3] represents sources and sinks 
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(volumetric flux per unit surface area). The surface flow equivalent porosity ranges between 0 and 1, 

depending on whether the depth of surface water is below or above the micro-topography. 

The average surface water flow velocity 𝐪o is given by: 

 

𝐪o = −𝐊o ∙ 𝑘𝑟𝑜∇(ℎ𝑜) 

 

where 𝑘𝑟𝑜 is a dimensionless factor accounting for obstructed flow and microtopography, and 𝐊o 

[m/d] is the surface conductance that is solved using Manning’s equation. 

Irrigation is simulated in HGS by the alignment of the numerical grid during mesh generation with 

irrigation infrastructure, e.g. drip irrigation piping, and by the subsequent specification of 

representative irrigation water fluxes [m3/d] via second-type (Neumann) boundary conditions at 

discrete model nodes located within the surface domain. 

Variably-saturated groundwater flow in HGS is simulated using Richards’ equation: 

 

𝜕

𝜕𝑡
(𝜃𝑠𝑆𝑤) = −∇ ∙ 𝐪 + Γex ± 𝑄𝑜 

 

where 𝜃𝑠 [-] is the saturated water content, 𝑆𝑤 [-] is the water saturation, 𝐪 [m/d] is the groundwater 

flux (i.e. Darcy flux), and 𝑄𝑜 [(m3/d)/m3] represents sinks and sources (volumetric flux per unit 

volume). 

The groundwater flux 𝐪 is given by: 

𝐪 = −𝑘𝑟(𝑆𝑤)𝐊 ∙ ∇(𝜓𝑤 + 𝑧) 

 

where 𝑘𝑟(𝑆𝑤) [-] is the relative permeability of the medium, 𝐊 [m/d] is the saturated hydraulic 

conductivity tensor of the porous medium, and 𝜓𝑤 and 𝑧 [m] are the pressure and the elevation head, 

respectively. Surface water flow and groundwater flow equations (i.e., the overland and the porous 

medium domains) are fully-coupled with the dual-node approach (de Rooij, 2017) and solved 

simultaneously, without requiring iteration. The relationship between the relative permeability of the 

porous medium, the soil water content and pressure can be given in tabular form or parametrized 

using the van Genuchten functions (van Genuchten, 1980).  

According to the approach of van Genuchten (1980), the saturation Sw is related to the matric suction 

ψ and the relative permeability kr by: 

𝑆𝑤 = {
𝑆𝑤𝑟 + (1 − 𝑆𝑤𝑟)[1 + |𝛼𝜓|

𝛽]
−𝜐
,         𝜓 < 0

1,                                                                𝜓 ≥ 0
 

 

𝑘𝑟(𝜓) = 𝑆𝑒
(𝑙𝑝)[1 − (1 − 𝑆𝑒

1
𝜐⁄ )
𝜐
]2 

 

𝑆𝑒 = (𝑆𝑤 − 𝑆𝑤𝑟)/(1 − 𝑆𝑤𝑟) 
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where Swr [-] is the residual saturation, α [L-1] and [-] are the van Genuchten parameters,  is given 

as 1 − 1 𝛽⁄  with 𝛽 >  1,  Se [-] is the effective saturation and lp [-] is the pore-connectivity parameter 

(which is 0.5 for the van Genuchten model). 

Evapotranspiration is modeled as a combination of evaporation and transpiration, affecting both the 

surface and the subsurface. Transpiration Tp [LT-1] is simulated based on the implementation of 

Kristensens and Jensen (1975): 

 

𝑇𝑝 = 𝑓1(𝐿𝐴𝐼) 𝑓2(𝜃) 𝑅𝐷𝐹 [𝐸𝑝𝑜𝑡 − 𝐸𝑐𝑎𝑛𝑜𝑝𝑦] 

 

𝑓1(𝐿𝐴𝐼) = max{0,min[1, (C2 + C1𝐿𝐴𝐼)]} 

 

where LAI [-] is the leaf area index,  [-] is the soil moisture content, RDF [-] is the root decay function, 

Epot [LT-1] is the potential evapotranspiration, Ecanopy [LT-1] is interception and canopy evaporation, and 

C1 [-] and C2 [-] are coefficients which express the relation of transpiration on LAI. C1 allows accounting 

for transpiration limiting vegetation characteristics (e.g., height, development stage, age of 

vegetation, degradation) and C2 for transpiration from vegetation for which LAI can’t be defined. The 

RDF describes the decrease of root density with depth. 𝑓2(𝜃) takes on values between zero and one 

according to: 

 

𝑓2(𝜃) =

{
 
 

 
 
0,         0 ≤ 𝜃 ≤ 𝜃𝑤𝑝
𝑓3,         𝜃𝑤𝑝 ≤ 𝜃 ≤ 𝜃𝑓𝑐
1,         𝜃𝑓𝑐 ≤ 𝜃 ≤ 𝜃𝑜𝑥
𝑓4,         𝜃𝑜𝑥 ≤ 𝜃 ≤ 𝜃𝑎𝑛
0,         𝜃𝑎𝑛 ≤ 𝜃

 

 

𝑓3 = 1 − [
𝜃𝑓𝑐 − 𝜃

𝜃𝑓𝑐 − 𝜃𝑤𝑝
]

C3

 

 

𝑓4 = 1 − [
𝜃𝑎𝑛 − 𝜃

𝜃𝑎𝑛 − 𝜃𝑜𝑥
]
C3

 

 

Below the wilting point wp [-], transpiration is zero, maximum transpiration is reached between the 

field capacity fc [-] and the oxic limit ox [-], and if the soil moisture content is above the anoxic limit 

an [-], root stress is so high that transpiration is again 0 (Feddes - Raats, 2004). C3 [-] is a fitting 

parameter with a recommended value of 1, making the ramping functions 𝑓3 and 𝑓4 linear (Feddes et 

al., 1978; Panday - Huyakorn, 2004). 

Agricultural drainage infrastructure such as tile drains can be simulated in HGS in an efficient manner 

using so-called 1-D pipe elements, which circumvents the computationally intensive calculations that 

would be necessary if drainage flow were considered explicitly as part of the variably saturated 
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subsurface porous medium flow domain. Instead, drainage flow in tile drains is simulated using the 

efficient one-dimensional Hazen-Williams equation (Aquanty, 2021). This, however, requires that the 

numerical grid is aligned with the drainage infrastructure already during mesh generation, such that 

the specification of the 1-D drainage network is possible via discrete model node selections. 

 

4.2.1.2 Case study site and model 

There were several case study sites selected for the fully coupled and physically based modelling 

experiments within WATERAGRI. For an assessment of irrigation water demand under different 

climatic and agricultural land use scenarios, the agricultural case study site in Lower Silesia, Poland 

was selected (case study site 5.7). The Lower agricultural case study site is located in South-West 

Poland around the village of Lubnów, which is approximately 20 km north of Wrocław. In hydrological 

terms, the farm studied is located on the border of 2 different hydrological catchments. However, as 

90% of the area of the farm is located in the Lubnówka River catchment, only the Lubnówka River 

catchment was considered for the fully coupled and physically based modelling experiments. The 

Lubnówka River is a tributary to the Odra River, which is Poland’s second largest river. The entire 

surface area of the said catchment is 17.4 km2, but, for modelling purposes, the catchment was limited 

to the 14.6 km2 located upstream of the official limnigraph (roughly 500 m upstream of where 

Lubnówka River joins the Odra River). According to the climate classification by Okołowicz (1977), the 

climate of the catchment is temperate warm transitional. The Lubnówka River catchment modeled is 

illustrated below in Figure 32. 

 

Figure 32:  Lubnow River catchment outline and location of Lubnow village (Image source: Google Earth) 

Mean annual precipitation at the study site, measured over the period 1991-2020, was 541  95 mm. 

Mean air temperature over the same period was 9.7  1 °C. With an average depth to groundwater of 

1-2 m, a significant amount of groundwater resides in the shallow aquifer of the study site. According 

to the information obtained from 20 boreholes, the shallow aquifer is limited underneath by 

impermeable bedrock sitting at a depth of 2-5m, depending on the location within the catchment. The 
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topsoil consists of loamy sand, clay and silt on 80%, 5% and 15% of the catchment area, respectively. 

Below 3-3.5m, the subsurface consists primarily of clay. 

In November 2020, 4 piezometers and 4 soil moisture measurement stations were installed in the 

catchment subject to the study. The soil moisture stations measure soil moisture within the top 80cm 

of the soil, at 10cm intervals. As mentioned above, an official limnigraph is located at the outlet of the 

catchment, alongside an official meteorological measurement station. 

 

4.2.1.2.1 Flow model setup and parametrization 

The currently used numerical model grid consists of an approximately equilateral triangular mesh with 

18’608 nodes and 36’948 elements of variable sizes, with higher resolution along agricultural drains 

and ditches and lower resolution on agricultural fields (Figure 33). Vertically, the model was 

discretized into 16 layers employing proportional sub-layering, whereby each of the top 10 layers was 

set to cover 2.5% of the total vertical extent of the model at any location, and the bottom 6 layers to 

cover 12.5% each. This fine vertical discretization in the top 25% of the model guarantees a 

numerically accurate simulation of variably saturated flow processes as required by Richards’ equation 

(Downer and Ogden, 2004). 

The 3-D numerical grid is illustrated below. 

 

Figure 33: Numerical grid for the Lower Silesia case study site as currently implemented in HGS. The numerical grid is 
vertically exaggerated for a better visual presentation of elevational gradients and the location of ditches 

For these illustrative scenario analyses, only the shallow aquifer was simulated, and the model was 

set to consist of sandy gravel using typical values after Li et al., (2008) and Dann et al. (2009) (𝐊 = 5.4 

m/d; porosity = 0.46;  = 3.48 m-1;  = 1.75, Swr = 5%). The lower and lateral boundaries of the model 

were set impermeable, except for the downstream lateral end of the model, which was simulated as 

the outflow boundary and implemented as a critical depth boundary condition. As actual 

evapotranspiration was directly subtracted from actual precipitation prior to forcing the model with 

precipitation, vegetation was not explicitly simulated in these illustrative examples. The integration of 
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more detailed subsurface parametrization, the explicit simulation of variable vegetation cover and 

transient model calibration via history matching or data assimilation are part of the outputs of WP6 

and WP7 and will be implemented later during the project. 

4.2.1.2.2 Simulated climatic scenarios 

With a view to illustrating the current state of progress of the fully integrated and physically based 

surface water-groundwater model of the Lower Silesia case study site and to demonstrating the 

capability of the model to allow an estimation of irrigation water demands later in the progress of the 

WATERAGRI project, the existing model was used to simulate 3 key meteorological scenarios: the year 

which reflects the annual average precipitation as measured between 1991 and 2020 most closely 

(2005; 544.5 mm of precipitation), as well as the driest (2015; 388.2 mm of precipitation) and the 

wettest (2020; 736.5 mm of precipitation) year during the same reference period. 

Simulations were run for a full 365-days period, driven by daily sums of precipitation as measured 

during the respective years. As remote sensing based high resolution maps of vegetation cover will 

only become available for the Lower Silesia case study site later during WP3/the WATERAGRI project, 

evapotranspiration was not explicitly simulated and the actual measured daily evapotranspiration was 

subtracted instead from the actual measured daily precipitation prior to forcing the model. Winter 

hydrological processes, i.e. snowfall and snowmelt, were not explicitly considered and all precipitation 

was simulated as rain. 

4.2.2 Scenario comparison 

Illustrations of the subsurface saturation of the numerical model under the three scenarios are 

presented in Figure 34. 

 

 

 

Figure 34: Comparison of subsurface saturation in the catchment on an arbitrarily chosen day (day No. 200 = 18 July) 

While the lower part of the catchment is generally saturated and water levels are close to the surface 

in all three scenarios, the saturation state varies more in the upstream parts. However, while the 

wettest year exhibits strong accumulation of water in topographic depressions even in the upstream 

parts, the driest and the mean scenarios do not differ much in the upstream parts. This illustrates the 

fact that real yearly records were simulated, which, even though they may differ in the total 

precipitation that has fallen during a year, may also differ significantly in their evapotranspiration. In 

the Lower Silesia study area, for example, dry years do not correspond with years of large 

precipitation, and vice versa, wet years do not correspond with years of low evapotranspiration. 

Nevertheless, as visible in the monthly water balances of the three scenario years, illustrated below 
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(Figure 35), over an entire year a clear decline in the discharge of Lubnówka River and net groundwater 

recharge from wettest to driest year can be seen. With near zero precipitation and therefore zero net 

recharge during the driest months of the dry scenario, one can expect strongly increased demand for 

irrigation water compared to the mean and the wettest scenarios. 

 

 

  

Figure 35: Comparison of monthly water balances of the three simulated scenarios. Illustrated are precipitation, discharge 
at the catchment outlet, and groundwater (GW) storage changes. Positive groundwater storage changes indicate net 

recharge, whereas negative GW storage changes indicate net GW exfiltration. Note that these numbers are indicative and 
expected to change with the upcoming refinement of the model. 

4.2.3 Outlook 

The preliminary results presented herein describe the current state of progress of the physically-

based, 3D surface water-groundwater-vegetation modelling that represents the basis of the modelling 

for WP6 and 7. By showing the current state of progress of the Lower Silesia study site model, we 
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aimed to demonstrate how the model is able to represent all important components of the water 

cycle in an integrated and physically explicit way. In a next step, we are going to include detailed soil 

maps, land use information and vegetation cover from the WATERAGRI remote sensing pipeline in 

order to improve the model’s ability to represent the study site. Once fully set up and validated, the 

model will be used for data assimilation with the HGS-PDAF data assimilation system. The HGS-PDAF 

data assimilation system is currently being developed as part of WP7. 

5 Remote sensing based yield prediction model 

In this chapter, wheat yield was derived by linear regression based on reported yield values against 

the time series of six different peak-seasons. The analysis was performed on the yield information 

from 2013 to 2018, with the application of the Landsat 8-derived Normalized Difference Vegetation 

Index (NDVI) and Soil Adjusted Vegetation Index (SAVI). NDVI- and SAVI-based forecasting models 

were validated based on 2018-2019 datasets and compared to determine the most appropriate index 

of a better performance in forecasting wheat production in the Tisza River basin. 

5.1 Site and data description 

The study area is part of the Tisza River catchment (altitude below 200 m), which is the most important 

wheat and corn producing region in the Carpathian basin and in Central and Eastern Europe. Based on 

the annual reports of the Hungarian Central Statistical Office, around 55% of the arable lands are 

covered with wheat and maize. 26 wheat fields were selected throughout the Northern Great Plain 

region (NUT 2) within the Tisza River basin of the Hungarian Great Plain region. The 26 investigated 

sites were of different sizes ranging from 5 to 34 ha. The total area involved in the research was 438 

ha including sites of Nyírbátor. The winter wheat yield in this area was large in 2015 and 2017 (>5 t/ha) 

and average in 2019 (~ 5 t/ha). However, significant drought periods were observed in several other 

years, therefore a decrease in yields was recorded in 2013, 2014, 2016 and 2018 (~ 0.8-1 t/ha loss, 

compared to average). 

Compared to high resolution sensors, low resolution satellite images have a much better synoptic view 

providing higher temporal resolution by means of their large swat width (Rembold et al. 2013). 

However, the accuracy of yield detection, the interpretation (and validation) of the signal, as well as 

the reliability of the information content of the satellite images tend to be limited due to the spatial 

resolution. An average farm size is 14-15 ha in Hungary (Biro et al. 2011) and field sizes are often 

smaller. Therefore, datasets such as the Fraction of Absorbed Photosynthetically Active Radiation 

(fAPAR) or Advanced Very High-Resolution Radiometer (AVHRR) are not appropriate for yield 

monitoring (Gobron and Verstraete 2009), as a single pixel exceeds the average crop farm size in the 

CEE region. In Hungary, MODIS NDVI time-series at 250 m ground resolution had sufficient temporal 

and radiometric resolution to discriminate between major crop types and crop-related land use 

practices (Ferencz et al. 2014, Nagy et al. 2018). On the other hand, the probability of the mixed sub-

pixel reflectancy of the 250m MODIS pixels is much higher than in the 10 m counterpart, meaning that 

the large pixel area is probably only partially represented in the analyzed crop canopy. This type of 

sub-pixel disturbances may cause an inherent uncertainty during measurement (Dempewolf et al. 

2014). Landsat 8 produces data of higher spatial resolution (30 m) and is freely available (Woodcock 

et al. 2008). Landsat (or similar sensors such as SPOT) is the main source of data of sufficient spatial 

resolution in most agricultural areas, but has a 16-days’ gap between successive images. In very rainy 

years in Hungary, like in 2020 it can be difficult to obtain a sufficient number of clear images within a 
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growing season, given the cloud cover (Lobell 2013). In addition, studies on the relationship between 

crop yield and Landsat-derived vegetation indices are mostly bound to focus on individual fields (Liu 

et al. 2006; Lyle et al. 2013; Potgieter 2014). Since Landsat-derived vegetation indices have been 

proven to be an effective tool for assessing vegetation conditions, they can be reliably used to predict 

crop yield. In the present study, Landsat 8 satellite images for the growing seasons in 2013 to 2019 

were downloaded from the USGS EarthExplorer website. Landsat 8 data have 11 bands: operational 

land imager (OLI) and thermal infrared sensors (TIRS) C1 Level-1 images with nine spectral bands. Band 

4 (red) and band 5 (NIR) with 30 m spatial resolution were used for further processing. 

5.2 Data processing  

Data processing and yield forecasting involve several steps from data collection through processing 

and calibration to validation. First, the data were collected from online sources, then preprocessed for 

further analysis, including vegetation index calculation (NDVI, SAVI), smoothing and masking for each 

agricultural parcel. Thereafter, the model was calibrated with crop yields, and finally, the forecasting 

models were validated with the yield measurements observed. In the current research, NDVI and SAVI 

were chosen, since these vegetation indices (VIs) were ranked as the VIs with the highest correlations 

with wheat yield (Panek et al. 2020; Mokhtari et al. 2018). To reduce the noise in the VIs time series, 

a smoothing process was needed and a penalized spline-based smoother was applied for the 

smoothing of the data. Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation 

Index (SAVI) image data were derived from Landsat 8 satellite images based on the following 

equations: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
  

𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
) ∗ 1.5  

 

The value of L varies by the ratio of green vegetation. L=0: in very high vegetation regions, L=1: in areas 

with no green vegetation. In the current case, L=0.5 was chosen. This value ensures the consistency 

of the different environmental conditions of the fields and works well in most situations. (Huete, A.R 

(August 1988).  

In this study, 26 wheat parcels were selected to derive average biomass-related VI time series 

separately. The analysis focused on the peak-season time intervals (May to June), for the 6 years under 

consideration. The availability of Landsat images limited the reliability of the analysis. Wheat yield 

prediction models related to each Landsat observation date were developed by the regressing of the 

observed yield values against time series of Landsat 8-based NDVI and SAVI data. According to studies, 

remote sensing time series of at least 6 years should be used for analyzing crop yield (Dempewolf et 

al. 2014, Nagy et al. 2018). Linear regression models were developed based on six years’ VIs data (2013 

to 2018). The use of standard linear regression models with standard estimation techniques is subject 

to a number of conditions regarding the explanatory (x) (which were the Vis) and output (y) variables 

(which was the yield data) and their relationship. For model validation, 2018 and 2019 data were used. 

The performance of the forecast models was evaluated based on the data of 26 sites (n=26) with the 

accuracy metrics coefficient of determination (R2), Root Mean Square Error (RMSE) and Normalized 

Root Mean Square Error (NRMSE). 
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R2 = 1 −
∑ (yi − yí )

2n
i=1

∑ (yi − y̅)
2n

i=1

  

RMSE = √
∑ (yi − yí )

2n
i=1

n
  

NRMSE =
√
∑ (yi − yí )

2n
i=1

n
(y̅)

 
 

 

Where: yi is predicted yield data; yí is the observed yield data; y̅ is the average of the observed yields; 

and 𝑛 is the number of field samples used for validation.  

RMSE is a commonly used uncertainty metric for absolute predictions of errors and NRMSE is useful 

for comparisons between seasons in the case of variable yield ranges (Darvishzadeh et al. 2008). Nash-

Sutcliffe efficiency E1 was also used to assess the accuracy of the predictions. Nash and Sutcliffe (1970) 

defined the efficiency E1 as one minus the sum of the absolute squared differences between the 

predicted yield and the observed yield data normalized by the variance of the observed yield data 

during the period under investigation: 

E1 = 1 −
∑ (Oi − Pi)

2n
i=1

∑ (Oi − O̅)
2n

i=1

  

 

Where: 𝑂𝑖 is the observed value or observed yield data, 𝑃𝑖 are the predicted yield values; O̅ is the 

mean of the observed values. Values of 𝐸1 range between 1.0 (which is perfect fit) and −∞. An 

efficiency rate that is lower than zero indicates that the average value of the observed yield would 

have been a better predictor than the model. 

During the validation process, the relative deviations and absolute deviations of the predicted values 

from the observed values were calculated in order to assess the overall forecasting accuracy. In order 

to highlight the yield ranges in which the forecasting model performs the best, significant difference 

between the predicted and observed yield values was assessed within different yield ranges. 

5.3 Yield estimation models 

Wheat yield estimation was derived by the regressing of the reported (observed) yield values against 

the NDVI and SAVI time series of six different peak seasons. The effectivity of these vegetation indices 

for wheat yield assessment and forecasting was analysed and tested. The peak-season of wheat is in 

May and early June, followed by the ripening stage, then the harvesting period in early July in the Tisza 

River basin. Therefore, NDVI and SAVI data from day 120 to 190 (30 April to 9 July) were collected and 

analysed for wheat yield forecast. NDVI and SAVI indices showed the highest peaks (NDVI: 0.46±0.077; 

SAVI: 0.837±0.338) from day 138 to 150 (18 May to 30 May). After this period, vegetation indices 

started to decline slightly until the harvest in accordance with several studies (Rembold et al. 2013, 

Becker-Reshef et al. 2010, Basnyat et al. 2004, Boken and Shaykewich 2002, Delécolle et al. 1992,). 

The significance and strength of the correlations between VI’s and wheat yield changed accordingly 

with the changes of NDVI and SAVI values (Figure 36). The coefficients of determination were the 

highest (R2>0.6) from day 138 to 167 (18 May to 16 June) for both VIs. This interval corresponds to 

BBCH values from 41 to 71. The difference between the NDVI and SAVI-derived models is that the 
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NDVI performed maximum regression coefficients (R2=0.757) in the beginning of the heading stage, 

whilst SAVI performed maximum regression coefficients (R2=0.943) in the flowering and early ripening 

stage. Furthermore, the relationship between the wheat yield and the SAVI values were stronger than 

in the case of NDVI, suggesting SAVI being a better predictor for wheat yield. 

 

 

Figure 36: Determination coefficients of forecast versus reported wheat yield at a given time 

In order to gain further insight into the yield prediction algorithms, results of the regression analysis 

were selected to interpret the characteristics of the NDVI- and SAVI-based models in BBCH 41, BBCH 

59 and BBCH 71 stages as shown in Figure 37. The on scale values indicated the strongest correction 

with NDVI and SAVI. The models allow a rapid assessment of yields for different phenological stages 

of the wheat. 

 

Figure 37: Yield prediction algorithms and NDVI and SAVI models 
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The performance of NDVI and SAVI for wheat yield forecasting was calculated based on 6 years’ 

training data over the most sensitive (heading, flowering, ripening) period of wheat (May and early 

June). Average wheat yield data observed in the study area from 2018 to 2019 were used to further 

validate the forecast models and to calculate prediction accuracy. The Nash-Sutcliffe efficiency index 

(𝐸1) was used to test the performance of the wheat yield models. 𝐸1 =  0.716 for the NDVI-based 

model and 𝐸1 = 0.91 for the SAVI-based model. The prediction outcomes were compared to the 

officially reported yield values. RMSE, NRMSE, absolute and relative deviation versus reported yield 

were also calculated. The coefficients of determination for wheat yield were more than 60% for NDVI 

and 70% for SAVI during the phenological peak period based on the 6 training years. For NDVI, the 

forecast error varied between 0.25-0.45 t/ha (5.13-9.30 %) based on the RMSE and NRMSE of the 

prediction models. The lowest prediction errors were obtained for models calibrated for the early 

ripening periods. In the case of SAVI, the forecast error varied between 0.17-0.23 t/ha (3.34-4.64 %), 

i.e. it demonstrated a better performance than the NDVI-based prediction (Figure 38). 

 

Figure 38: RMSE and NRMSE of predicted values versus reported wheat yield values 

In order to assess the overall prediction accuracy of the VI-based prediction models, predicted yield 

values for the total, most sensitive period was averaged and compared to observed yield values. The 

RMSE of NDVI-based prediction model was 0.357 t/ha (NRMSE: 7.33%). The RMSE of SAVI-based 

prediction model was 0.191 t/ha (NRMSE 3.86%) (Figure 39). 

 

Figure 39: The accuracy of the predictions based on NDVI and SAVI 

Based on the mean relative deviation (-1.072 %), NDVI slightly underestimated the observed yield 

values. On the other hand, SAVI-based predictions resulted in a slightly positive bias (0.46%) compared 

to reported values. The mean absolute deviation between the estimated and the reported yield data 

was also higher in the case of NDVI-derived prediction (about 8.5 %) compared to 4.1 % for SAVI-based 

yield predictions (Figure 40). The accuracy of NDVI-derived prediction was only below the 5% 

threshold, which is generally regarded as good (Ferencz et al. 2004). 
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Figure 40: Absolute and relative deviation values from officially reported wheat yields 

The uncertainties and forecasting precision for different yield ranges were evaluated in order to 

highlight the yield ranges in which the forecasting model shows the best performance. First, predicted 

yield values were associated with observed yields. Then 4 groups with different yield intervals were 

set up based on observed yield values. Independent T-test analyses were used to assess significant 

differences between observed and predicted wheat yields. As a result, the distribution of the 

predicted yields was compared to the real, observed yield distributions (Figure 41). 

 

Figure 41: Differences between observed and predicted yield within wheat yield ranges for NDVI and SAVI 

In the case of NDVI, higher yield values were significantly underestimated. The difference between 

predicted yield values and observed yield values is 0.55 t/ha (on average). In the case of SAVI, there 

were no significant differences between observed and predicted values. 

This study was carried out for the purpose of developing a satellite-based system (Landsat 8) for wheat 

yield forecasting and to determine the uncertainties of the prediction for different yield amounts to 

provide a solution applicable to the lowlands of the Tisza River catchment. Several studies (Rembold 

et al. 2013, Marti et al. 2007, Labus et al. 2002, Mkhabela et al. 2011, Bai et al. 2019, Yousfi et al. 2016) 

have shown the validity of using satellite-derived vegetation indices for wheat yield forecasting. In 

accordance with these previous studies, current results have demonstrated that there are significant 

correlations between the VIs and final crop yields, and the peak season with the highest NDVI values 

at the heading stage of wheat was found to be the most optimal to predict the crop yield. 

 
*yield range, in which there was significant difference between observed and predicted yield data (p<0.05) 

 1 

 2 

* 
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The NDVI- and SAVI-derived models performed well regarding wheat yield prediction. Wheat yield 

prediction for the most sensitive period (May and early June) is a better predictor than the application 

of prediction models individually derived from VIs on a certain day of the year. The error rate of the 

NDVI-based prediction model was 0.357 t/ha (7.33%), which is in correspondence with Rudorff and 

Batista (1991), who estimated wheat yield at the farm level using Landsat in Brazil with 0.37-0.44 t/ha 

prediction accuracy. In Pakistan, values were reported based on MODIS NDVI with 10% accuracy 

(Dempewolf et al. 2014) and Nagy et al. (2018) studied wheat yield forecasting for the Tisza River 

catchment using MODIS NDVI and found 7% accuracy between the predicted and actual yield.  

For high yields, NDVI based yield forecasts demonstrate the highest rates of uncertainty. This might 

be because NDVI is known to saturate at high LAI values (Sellers 1985, Goswami et al. 2015), which in 

turn reduces NDVI sensitivity for higher yields. From average to lowest wheat yields, it is the NDVI-

based forecasting model that performs the best, therefore prediction can be a useful tool to detect 

yield losses caused by drought phenomena, and it can also present a feasible option in specific crop 

drought monitoring.  

Contrary to NDVI, SAVI-based predictions demonstrate a similar performance for all yield ranges and 

performed better compared to NDVI with an error rate of 0.191 t/ha (3.86%). Muller et al. (2020) also 

found that SAVI achieved slightly higher accuracies than NDVI, suggesting that SAVI reduced some of 

the effects of soil background reflectance. Liaqat et al. (2017) also proved that SAVI-derived models 

performed better for wheat prediction than NDVI or EVI. Results also showed that soil adjusted 

vegetation index (SAVI) was the best VI (out of several others, including NDVI) for LAI estimation 

(Mokhtari et al. 2018), which can contribute to the better prediction accuracy of SAVI. 

On the whole, moderate and high spatial resolution remote sensing images such as Landsat 8 images 

have a significant potential in wheat yield prediction and SAVI is a better predictor for wheat yield 

than NDVI. 

The model developed is based on spectral indices derived from 30 m spatial resolution Landsat 8 

multispectral images. In our days, with Sentinel’s 2 and Proba-V sensors, a new era of Earth 

observation has started (Rembold et al. 2013). With these new sensors, data availability at coarse and 

medium resolution increases at high revisit frequency, but further studies are needed to guarantee 

proper sensor inter-calibration, as there aren’t any time series available for them for the time being 

which could be used for accurate yield forecasting. In addition, some studies have suggested that 

multivariate analysis or non-linear methods are more reasonable than linear approaches when canopy 

reflectance is used to establish the yield prediction model and that they have equal or better 

performance than the spectral index method in crop yield prediction, especially when hyperspectral 

data are used (Uno et al. 2005, Ferrio et al. 2005, Ye et al. 2007). 

Information on long-term yield variability is important for tailoring farming practices to the needs of 

crops. In particular, remotely sensed vegetation indices (VIs) such as NDVI and SAVI have been widely 

utilized for agricultural mapping and monitoring. Wheat yield forecasting techniques based on remote 

sensing data with 30 m spatial resolution have been evaluated. In this study, the forecasting method 

was developed based on vegetation indices derived from multi-spectral remote sensing data (Landsat 

8 NDVI and SAVI) and reported wheat yield data in the Tisza River catchment area. The wheat yield 

forecasting model developed based on six training years provides timely information on wheat 

production in a regular and standardized manner at the field and catchment level and makes it 

possible to predict the yield six weeks before harvest. Understanding the applicability and accuracy of 

yield prediction is also an essential component of forecasting, because the ultimate goal is to reduce 
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forecast uncertainties for a particular location and for a specific group of people or a specific segment 

of the agricultural or economic sector. With the forecasting method, moderately good and good 

estimates can be provided based on NDVI and SAVI as early as possible during the growing season, 

which can then be updated periodically throughout the season until harvest. This information can 

reduce the impacts of possible yield losses, if communicated to farmers or decision-makers in a timely 

and appropriate manner. This way, considering the recent development of global environmental 

changes, governments and international boards would become capable of mitigating water shortage, 

and thus providing for food security and addressing societal and international conflicts more 

effectively. On another decision-making level, this type of information would enable farmers to 

optimize irrigation and fertilization expenditures and thereby contribute to the achievement of 

maximum profits. 
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6 Remote sensing based vegetation data in irrigation 

Crop irrigation demand is essential for agricultural producers to understand (WOZNICKI et al., 2015). 

The active control of irrigation and water resources can prevent land degradation, increase plant yields 

and reduce capital investment (DE VRIES et al., 2003). Irrigation water management involves the 

application of a certain amount of water according to crop demand, which can be retained in and is 

consistent with the intake characteristics of the soil (USDA, 2016). The demand of plants is extremely 

important in the process of water supply management. In other words, accurate prediction of plant 

consumption and evapotranspiration is the key to determining the irrigation amount (DJAMAN et al., 

2018). Weather parameters, crop factors, farming methods and environmental conditions all affect 

crop evapotranspiration (FAO, 2010). 

6.1 Satellite images of vegetation and soil with potential use for 

irrigation support 

6.1.1 Study area 

Temmesjoki basin is located south-east of Oulu (Northern Ostrobothnia region in Finland, Figure 42). 

As reflected by Earth Observation Satellite (EOS) data, the basin encompasses 9 land cover classes as 

listed in the table below (Table 5). 

From all the 10 classes mentioned in the global land use/land cover (LULC) map for the year 2020 by 

ESRI1, the land cover of the class ‘Trees’ (i.e. Forests) appears to be the major class (880.330 km2 or 

66.72% of the area). Other land cover classes are ‘Crops’ and ‘Shrubs’ covering an area of nearly 241.94 

km2 (16.68 %) and 215.26 km2 (14.84 %), respectively. Although a variety of crops are cultivated in the 

basin, potato is the main crop. 

 

 

 

                                                           
1 https://www.arcgis.com/home/item.html?id=d6642f8a4f6d4685a24ae2dc0c73d4ac , accessed 28.10.21 

https://www.arcgis.com/home/item.html?id=d6642f8a4f6d4685a24ae2dc0c73d4ac
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Figure 42: Temmesjoki basin and its location and land cover 

Table 6: Land cover classes in Temmesjoki basin 

Class Code  Class Name Area (km2) Percent 

1 Water 7.48 0.51 

2 Trees 880.33 60.72 

3 Grass 70.48 4.86 

4 Flooded Vegetation 7.38 0.50 

5 Crops 241.94 16.68 

6 Shrub 215.26 14.84 

7 Built Area 26.17 1.80 

8 Bare land 0.29 0.02 

9 Snow 0.44 0.03 

6.1.2 Methods 

Analysis of remote sensing datasets 

Remote sensing analysis focused on the assessment of cropland areas and was aimed at the evaluation 

of the potential use of satellite images for irrigation and crop management. We assessed the 

correlation between annual crop production and potential climatological variables which may affect 

it. From the earth observation variables available to us, land cover, precipitation, Land Surface 

Temperature (LST) and evapotranspiration (ET) were considered in this study. We used the Google 

Earth Engine (GEE) platform to process the remote sensing images. The Earth Observation Satellite 

(EOS) data used in this study are summarized along with spatial and temporal resolutions in Table 7. 

Crop yield values were collected from the agricultural statistics database of the Natural Resources 

Institute Finland (LUKE). 

Temporal resolution constitutes the major prerequisite for the current investigation. For the purpose 

of the effective monitoring of crop water requirement, the temporal resolution of the temperature 

and the precipitation have to be available for every day. 
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Table 7: Earth Observation Satellite (EOS) data used in the study 

Variable Satellite / Sensor 
Spatial 
Resolution 

Temporal 
Resolution 

References 

Land cover Sentinel 1-2 10-m Year 2020 (Karra et al.,2021) 

Precipitation 
GPM 10-km 3-Hours 

(Skofronick-Jackson et 
al., 2018) 

TERRA Climate Model 4-km Monthly (Abatzoglou et al., 2018) 

LST 
MODIS 

1-km Daily (Wan, 2006) 

ET 500-m  8-Days (Running, 2018) 

 

Remote sensing-based water stress assessment 

Satellite observations have also been used to assess crop water stress. For that purpose, the crop 

water stress index (CWSI) is used. According to Jackson et al., (1981), the CWSI can be expressed in 

terms of evapotranspiration as follows:  

 

CWSI = 1 − 
ETa
ET0

 

 

where ETa= Actual evapotranspiration and ET0= Reference evapotranspiration. 

The definition of drought proposed here is based on standardized precipitation. The Standardized 

Precipitation Index (SPI) was calculated at the timescales of 3, 6, 12, 24 or 48 months. The SPI-based 

drought categories according to McKee et al. (1993) are presented in Table 8. 

 
Table 8: SPI-based drought categories 

SPI Values Drought Category 

0 to -0.99 Mild Drought 

-1 to -1.49 Moderate Drought 

-1.50 to -1.99 Severe Drought 

≤ -2.0 Extreme Drought 

 

6.1.3 Results 

As shown by the results, Temmesjoki basin in general receives sufficient precipitation for rainfed 

farming, however, too low or high precipitation may cause reduced crop yield in some years. Yield was 

low in 2004, 2006 and 2008, and these years were analyzed more carefully. As for precipitation, EOS 

data show high, low and normal mean annual monthly values for 2004, 2006 and 2008, respectively 

(estimated from TERRA-Climate) (Figure 43). 
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Figure 43: Crop production yield vs. Climatological Variables 

The highest precipitation occurred in 2004 with mean monthly precipitation exceeding 80 mm (Figure 

43). The frequency table (calculated by GPM daily data, Table 8) shows 56 days with precipitation 

above 1 mm during the growing season (May-Sep). The low yield in 2004 was probably due to too 

much precipitation. 

The lowest mean monthly precipitation (less than 20 mm per month) was recorded in 2006. In that 

year, only 32 days had more than 1 mm rainfall, 37.5% of which occurred in months relevant for crop 

production (Table 8). This has been the lowest recorded rainfall over the last 20 years. The low yield 

observed in 2006 was due drought, as also indicated by the crop water stress index (Figure 44). 

 

Figure 44: Crop Water Stress Index 

The RS data (cf. Section 6.1) and water balance simulation (WBS) (cf. Section 3) analysis also show that 

a serious drought occurred and caused low crop production in 2006. The SPI-based drought categories 

also indicated extreme drought in 2006 (Appendix 1, Figure A1). Monthly precipitation maps of June -

August for the last two decades also indicate lower precipitation in 2006 compared to other years 

(Appendix 1, Figure A2- A4). 

In 2008, mean monthly precipitation was almost 70 mm (Figure 43). However, it was not evenly 

distributed over the cropping period (Table 9), which could be a reason for low crop production (Figure 

43). 
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Table 9: Precipitation frequency over the last 20 years 

Year Precipitation < 1 mm Precipitation > 1 mm 

Days (May 
- Sep) 

Percent 
(Jun-Aug) 

Mean (Jun-
Aug) 

Days (May 
- Sep) 

Percent (Jun-
Aug) 

Mean (Jun-
Aug) 

2001 99 57.6 0.17 54 64.9 5.49 

2002 113 61.1 0.22 40 47.5 7.9 

2003 108 62.9 0.28 45 53.3 5.13 

2004 97 58.7 0.27 56 62.5 7.67 

2005 108 61.1 0.29 45 57.8 6.81 

2006 121 66.2 0.15 32 37.5 3.1 

2007 100 61 0.25 53 58.5 7.1 

2008 108 50.9 0.20 45 82.2 7.64 

2009 111 63.9 0.18 42 49.9 7.9 

2010 100 56 0.16 53 67.9 5.9 

2011 102 58.8 0.18 51 62.7 7.7 

2012 93 55.9 0.27 60 66.6 6.12 

2013 111 53.1 0.24 42 78.8 6.25 

2014 108 53.7 0.13 45 75.6 5.5 

2015 95 58.9 0.19 58 62 6.75 

2016 102 52.9 0.16 51 74.6 8.5 

2017 118 55.8 0.07 35 74.2 6.5 

2018 117 58.1 0.08 36 77.8 6.7 

2019 112 62.6 0.07 41 53.7 7.14 

2020 104 61.5 0.15 49 57.2 7.5 
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6.2 Model concept for vegetation based ETc estimation 

FAO Irrigation and drainage paper 56 proposed an updated workflow for the calculation of reference 

and crop evapotranspiration based on meteorological data and crop coefficient (Han, 2018). The 

regenerated method provides estimates which are more consistent with the actual crop water 

demand information worldwide and overcomes the shortcomings of the previous FAO Penman 

method (SMITH et al., 1998). In addition, it describes and explains crop evapotranspiration (ETC), crop 

coefficient (Kc), meteorological data and reference evapotranspiration (ET0), and also clarifies the 

relationship between them. 

ET0 is defined by temperature, relative air humidity, solar radiation, wind speed and air pressure 

according to the FAO Penman-Monteith equation (FAO, 2010). The equation determines the 

evapotranspiration of the reference surface of hypothetical grass and provides a standard that can be 

compared to the evapotranspiration in different periods or other regions in a year and is related to 

the evapotranspiration of other crops (Zotarelli - Dukes, 2010). 

Crop evapotranspiration is estimated in the FAO methodology by the multiplication of the reference 

grass evapotranspiration with the factor Kc, which is dependant on crop characteristics such as crop 

height, the albedo of the crop-soil surface, canopy resistance and evaporation from soil (Pereire, 

2007). Thus, Kc has a seasonal pattern during the vegetation period, distinguishing between an initial, 

growing, mid-season and end stage (Lazzara - Rana, 2010).  

Denser canopy tends to reduce evaporation, as well as transpiration from the layer closer to the 

ground surface by creating a more humid and cooler microclimate. Consequently, only a limited 

volume of water can leave the system, since the direct contact between the surface of the more 

saturated canopy top and the dry, hot external system is limited (Jing et al 2021). 

The FAO provides time-averaged Kc stage-specific values for several crops, including maize. For maize, 

the typical 𝐾𝑐 values in the four stages are 0.3 in the initial stage, followed by a continuous increase 

from 0.3 to 1.2 in the growing stage, a plateau in the mid-season and a continuous decrease from 1.2 

to the values between 0.6 and 0.35 in the end stage (Han, 2018). Jiang et al. reveal that Kc and the Leaf 

Area Index (LAI) show a strong relationship during the different growing stages of maize (Jiang et al., 

2014). In a crop water supply model, both LAI and Kc are related to vegetation state (Čerekovic et al., 

2010; Diet al., 2019; Munitz et al., 2019), it is significant to determine them for practical reasons. Kc 

can be obtained by the FAO-formulations or estimated from the Leaf Area Index (LAI).  

𝐸𝑇𝑐 = 𝐾𝑐 ∙ 𝐸𝑇0 

Leaf Area Index is defined as the unilateral green leaf area per unit surface area characterizing plant 

canopies (Watson, 1947). Monitoring the distribution and change of LAI is important for assessing the 

growth and vitality of the vegetation (Fang et al., 2019). LAI can be measured by (1) a direct method 

(“destructive sampling”) or (2) an indirect approach, by using optical equipment (Fang et al., 2019). 

Both methods of in-situ measurements usually involve intensive labour costs, and optical methods are 

also affected by the weather and environment due to instrument characteristics. LAI can also be 

estimated by remote sensing, through the empirical relationships with canopy reflectance or some 

vegetation index (Broge - Leblanc, 2001). 
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6.2.1 Overview of the analysis 

Remote sensing technologies are systems broadly used in the analysis of Earth surface processes, 

including the assessment of moisture conditions and vegetation health. The present chapter aims to 

provide irrigation support based on cost-effective, satellite-derived remote sensing information 

collected for the years 2018, 2019 and 2020 in Emilia-Romagna, Italy and the past two years in 

Nyírbátor, Hungary. The applicability of optical remote sensing technologies is highly determined by 

the visibility of the land surface. 2020 was a cloudy and rainy year in Hungary, resulting in long data 

gaps in the most important growth stages of the vegetation, which in turn forced the authors of the 

current Chapter to develop a novel approach to provide a straightforward solution for the evaluation 

of the water balance. 

Two methodologies were developed for the deterministic spatiotemporal modelling of the water 

budget. Both approaches are based on the joint realization of observed phenological phases (BBCH) 

and hydrometeorological data series, and the fusion of the either spatially or temporally high 

resolution of remotely sensed vegetation indices. The methodologies can be summarised as follows: 

(1) The simplified model of the crop coefficients can be useful, when the agricultural field is small 

compared to the sensor footprint of the high temporal resolution data series. This approach is based 

solely on high spatial resolution vegetation indices calculated from SENTINEL-2 images alongside with 

local observations. The spatiotemporal pattern of water budget calculation is simplified into the 

combination of a one-dimensional series for a certain vegetation index and the sequences of the 

Penman-Monteith input environmental factors. This technique is only effective with no significant 

data gaps in the satellite acquisitions (Figure 45). 

  

 

Figure 45: Simplified overview of the crop evapotranspiration model 

 



 H2020-SFS-2018-2020                                                                                                                              

64 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

(2) The fusion of high spatial and high temporal resolution satellite-derived information, which is 

the second approach, attempts to estimate long gaps in satellite information. The June of 2020 

happened to be an unusually rainy period in Hungary. The continuous cloud cover made the proper 

modelling of the most significant vegetation development stage impossible. Our novel approach is 

based on the complete fusion of the MODIS and SENTINEL images. The time-series model parameters 

of derived vegetation indices (even the raw spectral reflectances) are varied in space, therefore the 

capturing of space-time interactions provides substantial information about the development of the 

environmental process under study. The implementation of the model enabled the assessment of the 

water budget, thereby supporting precision irrigation for every 10 m2 of the study area. The variability 

regarding the water budget at the locations sampled was modelled simultaneously in space and time 

through deterministic functions. 

The next subchapters discuss the interpretation and limitations of remotely sensed spectral indices, 

as well as their relationship with the water consumption of the vegetation. Section 6.2.3 introduces 

the study sites where the distinguished methodology is benchmarked. In Section 6.2.4, the modelling 

framework of the simplified approach is introduced via an example study site located in Italy. In 

Section 6.2.5, the implications of the fusion model and the spatiotemporal phenomena in general are 

briefly discussed via an example from the Hungarian study site in 2020.  

6.2.1.1 Considerations related to remotely sensed data fusion 

High temporal resolution information from MODIS Terra and high spatial resolution information from 

SENTINEL 2 MultiSpectral Instrument (MSI) sensors (Table 10) were combined in order to support the 

optimal use of the limited water resources for crop yield maximization2. Due to the differences in 

sensor characteristics and product generation algorithms, cross-sensor relationships were extensively 

analysed to estimate reflectance values (Miura et al., 2006).  

In order to be able to assess and compare the remote sensing bands for different resolutions, 

resampling processes had been widely investigated by UNIDEB in a closely related research of the 

phenomena under the current study. The results were summarized by Zhao (2021). As pointed out by 

Zhao, the task is analogous with the concerning the exploration of subsurface oil reservoirs, for which 

lattice data (seismic surveys) are widely available, in combination with location-specific lithological 

series (logging data) (Deutsch and Journel, 1998). In our case, the spatially sparsely, but temporally 

more often sampled MODIS images represent the lattice data, whereas higher resolution satellite 

images can be considered as spatially extensive auxiliary information.  

In remote sensing, lattice data represent the sum of the energy reflected from the surface on the 

specific region of the sensor (charge-coupled device - CCD) for a specific time interval (camera 

shutter). Remotely sensed electromagnetic energy is divided into energy sub-intervals, called spectra. 

In short, larger CCD surface or lower flight path results in better spatial resolution, higher flight path 

leads to faster revisit over the same area, and longer shutter time generates better spectral resolution 

(Table 10). Consequently, if the same spectral content needs to be maintained, higher spatial 

resolution comes at the expense of less frequent revisits, while higher temporal resolution is 

achievable for the spatial resolution in exchange (BROOK et al 2020). 

 

 

                                                           
2 The rare revisit and weaker spatial resolution, as well as cross-sensor calibration instability led to the exclusion 
of the Landsat 8 images from the analysis. 
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Table 10: Spatial (m), temporal (day) and spectral (μm) resolution of the most popular multispectral sensors 

  SENTINEL 2 MSI LANDSAT 8 - OLI MODIS - Aqua 

  
wavelength 

(micrometer) 

spatial 
resolution 

(m) 
wavelength 

(micrometer) 

spatial 
resolution 

(m) 
wavelength 

(micrometer) 

spatial 
resolution 

(m) 

C/A 0.421-0.457 60 0.435-0.451 30 0.438-0.448 1000 

Blue 0.439-0.535 10 0.452-0.512 30 0.459-0.479 500 

Green 0.537-0.582 10 0.533-0.590 30 0.545-0.565 500 

Red 0.646-0.685 10 0.636-0.673 30 0.620-0.670 250 

VRE 0.694-0.714 20         

VRE 0.731-0.749 20         

VRE 0.768-0.796 20         

NIR 0.767-0.908 10         

narrow NIR 0.848-0.881 20 0.851-0.879 30 0.840-0.876 250 

Cirrus 1.338-1.414 60 1.363-1.384 30 1.230-1.250 500 

SWIR 1.539-1.681 20 1.567-1.651 30 1.628-1.652 500 

SWIR 2.072-2.312 20 2.107-2.294 30 2.105-2.155 500 

       

Revisit 
period (day) 

5 16 1 

 

The combination of energy levels measured in the spectral intervals over the same geographic location 

enables us to characterize the earth surface at a high frequency and relatively limited costs. This 

characterization may take the form of multivariate classification (e.g. cluster analysis), segmentation 

(e.g. principal component analysis) or an index calculated from the wide variety of spectral band 

combinations.  

 

6.2.1.2 The significance of the spectral indices 

Both MODIS Terra and SENTINEL MSI are optical and passive remote sensing sensors, thus their 

operation is highly vulnerable to the incoming electromagnetic wave reaching the reflective surface. 

The energy sum is determined by both the inter-annual sun angle fluctuation and atmospheric 

conditions (weather, pollution, dust). Spectral indices have great significance, not only because they 

are easy to apply, but also by mitigating the varying insolation conditions effectively – to some extent 

at least. This normalizing nature of the spectral indices enables the comparison of the surface 

conditions for different time instants (Brook et al 2020). 

Based on the satellite data provided by VULTUS for the Italian and Hungarian site, the performance of 

the following vegetation indices was examined in the crop evapotranspiration analysis: 

- NDVI:   Normalized Difference Vegetation Index (Sun et al 2021) 

- NDWI:   Normalized Difference Water Index (Saddik et al 2021) 

- NDRE:   Normalized Difference Red Edge (Reuben et al 2021) 

- NDREw:  Normalized Difference Red Edge for wheat provided by VULTUS 

- NRPB:  Normalized Ration Procedure between bands VV and VH polarization 

- LAI:  Leaf Area Index (Qu et al 2021) 
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The ultimate aim of the MODIS – SENTINEL fusion discussed is to estimate a temporally continuous, 

spatially dense dataset in the SENTINEL data dimension. To this end, the temporal pattern of the 

filtered and estimated MODIS data series can be mathematically transformed to valid SENTINEL 

observations through regression equations (Rufin et al 2021). The approach is limited, in that MODIS 

and SENTINEL pixel values have to represent the same, stationary environmental process. For 

example, if both active agricultural production and permanent land use are present under a specific 

pixel, the heterogeneity of the natural fluctuation of electromagnetic reflectance will make it 

impossible for us to reconstruct the development process of the vegetation in the agricultural area 

under study in a representative manner. 

Therefore, the approach introduced requires pixel-wise stationarity over the site subject to the 

analysis. Consequently, the minimal parcel size that can be estimated with the proposed approach is 

in the best case identical with the pixel size of the spatially sparse MODIS band. Only the red and near 

infrared bands of MODIS can provide 250 m resolution, all other bands are 500 m. This limits the 

analysis to the widespread Normalized Difference Vegetation Index (NDVI) for the Hungarian site.  

Although parcel sizes in Emilia-Romagna are much smaller, i.e. 4 hectares on average, the effect of 

cloud cover on the availability of SENTINEL images was fortunately not as substantial as at the 

Nyírbátor site in year 2020. However, it should be noted that the lack of the stationarity of the 250m 

resolution MODIS images (sub-pixel spectral mixture related to roads or different irrigation facilities) 

would not allow the application of the more complex data fusion approach implemented in Hungary 

 

6.2.2 Study site description 

Field trials are carried out by CER at the experimental farm Acqua Campus, covering 12.5 hectares and 

divided into approximately 25 fields. The fields are located in the plain of the Po valley, in the province 

of Bologna, near the village of Mezzolara di Budrio (44o34´N, 11o32´E). There are various crops 

cultivated in the farm (both perennial and annual). Crop rotation in the experimental fields is 

characterized by annual crops, such as winter wheat, soya, maize, onion and processing tomato. 

The soil of the farm is typical of the Po valley low land and has a high content of both silt, clay 

and fine sands. It is deep and without a noticeable skeleton (>2 mm). The soil in the area can be 

described as clay loam. It belongs to the Italian soil group “Suoli SECCHIA franco argillosi”, which can 

be classified as “Oxyaquic Haplustepts” (fine loamy, mixed, superactive and mesic according to Soil 

Taxonomy). These soils are calcareous and moderately alkaline; they have a texture of clay loam in 

the superficial layers and loam deeper in the profile. Soil layers are by multiple floods of the nearby 

Idice river. The soil within the farm is heterogeneous and its hydraulic characteristics vary from field 

to field and layer to layer, with a slight gradient from east to west. The average values for the soil 

parameters are specified in Hiba! Érvénytelen könyvjelző-hivatkozás.1. Soil bulk density ranges from 

1.3 to 1.5 g/cm3; saturation is between 0.47 and 0.50 m3m-3; field capacity is between 0.27 and 0.34 

m3m-3; the permanent wilting point is between 0.08 and 0.11 m3m-3; and the available water content 

is between 0.207 and 0.238 m3m-3. An extended, shallow groundwater table is normally present at a 

depth ranging from -0.6 to -1.8 m. During winter and at the beginning of the growing season, capillary 

rise could be significant in terms of the replenishment of the evapotranspiration of crops.  

The experimental farm is supplied with the CER canal water/supplied with water from the CER 

canal, the quality of which is checked several times during the irrigation season. CER’s irrigation water 

characteristics (long-term average) are freely available at 

https://qa.consorziocer.it:3000/cer_graph/client/index.html. 

https://qa.consorziocer.it:3000/cer_graph/client/index.html
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Table 11: Soil analyses 

Parameter Unit Average 

Sand % 32 

Silt % 50 

Clay % 18 

pH log H- 8,27 

CaCO3 total % 13,5 

CaCO3 active % 3,1 

N total % 0,06 

K exchangeable meq/100 g 0,34 

P (Olsen) meq/100 g 5,49 

CEC meq/100 g 21,6 

The farm itself is fully equipped to monitor various environmental variables used for modelling and 

there is also a small laboratory set up for principal soil and biomass analyses. The major variables 

monitored include soil moisture levels, groundwater levels, the amount of drainage and the 

concentration of pollutants and nutrients in drainage water. The farm also has a fully operational 

weather station equipped with a rain gauge, anemometer, phreatimeter and pan evaporimeter 

(Figure 46). 

 

Figure 46: Weather station located at Acqua Campus 

The climate of the site can be defined as sub-humid, with a mean annual temperature of 13.7°C and 

an average annual rainfall of 771 mm. The year of the field trials was characterized by severe drought. 

According to the estimates based on CER analyses, it has been the second harshest year in the study 

area with cumulative precipitation mostly below 200 mm in all areas which represents a deviation by 

50% from the reference climate (period 1961-2018). These conditions contributed significantly to corn 

production and yield values. 

For the purposes of this study, two experimental fields have been cultivated with corn in the 

ACQUACAMPUS farm (Figure 47): 
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Field 10 – Irrigated (Irr): this field was irrigated with the pressurized method (roller irrigator), where 

timing and volume was defined with the support of IRRIFRAME.  

Field 11 – Not irrigated (NoIrr): this field represents the test and was not irrigated. 

 

 

Figure 47: Experimental fields dedicated to the tests 

Hungarian study site 

The study site is the same as described in Chapter 5. 

 

6.2.3 Compilation of the database of observations 

The analysis is based on several independent, freely available datasets. The overview of the data 

sources is summarized in Table 12. 

Table 12: The overview of the data sources 

Data provider Provided datasets Primary data source 

VULTUS NRPB, raw bands Sentinel 1 satellite (ESA) 

VULTUS NDVI, NDWI, NDRE, LAI, raw bands Sentinel 2 satellite (ESA) 

CER Italian study site characteristics 
in situ weather station, soil data 
at the site 

CER BBCH, LAI local observations 

CER Historical hydrometeorological series in situ instruments 

UNIDEB Hungarian site characteristics local observations/instruments 

NASA GQ09 061 (NDVI) MODIS-Terra 

NASA Level 2 Collection 2 Landsat 8 

UNIDEB  Hydrometeorological data series in situ weather station  
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UNIDEB Soil moisture data series 
in situ moisture sensor at the 
site 

Hu Met Office Global radiation Open Data Server 

Hu Water Auth Historical hydrometeorological and soil moist drought monitoring server 

Agricolus Weather monitoing and data forecast Agricolus platform 

6.2.3.1 BBCH measurements 

Crop phenophases are assessed in a qualitative manner by the daily sampling of corn plants in the 

field. Results are expressed on the “Biologische Bundesanstalt, Bundessortenamt and CHemical 

industry (BBCH)” scale (Hack et al., 1992). 

6.2.3.2 LAI, reference evapotranspiration and precipitation series in Emilia-

Romagna, Italy 

The measurement of Leaf Area Index (LAI) was carried out through direct methods, which involve the 

removal of plants in the field on certain test areas and subsequent analyses carried out on the samples 

collected. 

In particular, for the plants collected in the field were subjected to LAI measurements carried out 

through the computerized analysis of high-definition images. This method involves the collecting of 

leaves, the calculation of the area using image analysis techniques and the measuring of the weight of 

dried leaves to derive the ratio between leaf area and mass per unit area. The existing method 

provides an accurate and reliable means to estimate LAI and is considered to be efficient. However, 

the application of this method on evergreen species is invasive. [1][2][3] 

Plants were harvested in the field on test areas of 1 m2. The methodology proposed for the direct 

measurement of the leaf area index requires: 

- a fresh leaf vegetation sample 

- a scanner (Mustek A3 600 Pro) 

- an image analysis software (Fiji ImageJ2) 

After having been calibrated through the scanning of a shape of a known area, the scanner is used to 

capture the images of the fresh leaf vegetation subsample. The single image captured by the scanner 

is processed by the analysis software. Subsequent processing leads to the measurement of the area 

occupied by vegetation in the image. The following operations are carried out to obtain this result: 

- Identification of the geometric characteristics of the image: The image resolution (dpi) and 

geometric resolution of the image are detected based on the settings of the scanner. 

- Binarization: Binarization refers to the process of the assignment of a binary digit for the 

purpose of the conversion of any image into its black and white equivalent according to the 

pixel intensities of an RGB image. 

- Adjustment of any noise in the image: There may be some pixels within binarized geometries 

that have not been categorized as intended. In this case, their desired classification can be 

achieved through the application of thresholding methods, through algorithms increasing the 

contrast of the image or manually, by the selection of the portions of the image not classified 

as desired. 



 H2020-SFS-2018-2020                                                                                                                              

70 
 

D3.1: Assessment of Use of Remotely Sensed Vegetation to Improve Irrigation 

- Quantification of the histogram: By analysing the histogram on the binary image, one can 

learn the number of pixels associated with the geometry of the image. 

- Area of leaf calculation: The number of pixels associated with the desired geometry is divided 

by the total number of pixels in the image. The result is then multiplied with the image area 

(in this case an A3 sheet). 

The result of the analysis of the area of the sub-sample refers to its dry matter to be used for the 

calculation of the SLA (Specific Leaf Area). The SLA (cm2 g of dry matter-1) can then be multiplied with 

the total dry matter (g) present in the 1 m2 test area to obtain the leaf area index (LAI). 

CER provided exact, calculated ET0 values for the Italian site, which were later considered as time 

series for model input. 

6.2.3.3 The organization of evapotranspiration-related datasets in Nyírbátor, 

Hungary 

In order to be able to calculate precise reference evapotranspiration based on the Penmann-Monteith 

approach, Batortrade Ltd as the cultivator of the Nyírbátor site provided meteorological data for 2020 

and 2021 (DavisMet 2020, coordinates: 47° 49' 26", 22° 08' 53", elevation 145 masl.). The station 

collected data such as: 

- Daily minimum, maximum and mean temperature,  

- Mean dew point,  

- Mean air pressure,  

- Daily cumulative precipitation, and  

- Wind speed and wind direction.  

Furthermore, daily global radiation is also necessary to determine ET0. Solar insolation can be regarded 

as spatially less heterogeneous than the aforementioned hydrometeorological variables, therefore 

the series of the Debrecen weather station located about 70km from the site (47° 29' 25"; 21° 36' 38") 

provided by the Hungarian Meteorological Service were in this analysis. The dataset is freely available 

from the odp.met.hu site. 

Long-term hydrometeorological, as well as soil moisture data time series can be queried from the 

nearby drought observatory station located in Nyírlugos, at about 1 km from the study site (47° 49' 

34", 22° 06' 15"). The station is operated by the Hungarian Water Authority. The dataset is freely 

downloadable from the Hungarian drought monitoring site3. 

The station provides the following information: 

- Daily mean temperature, 

- Soil moisture at 10, 20, 30, 45, 60 and 75 cm, 

- Soil temperature at 10, 20, 30, 45, 60 and 75 cm, 

- Soil water deficit at 35 and 80 cm, 

- Relative air humidity, 

- Precipitation, and 

- Meteorological drought index. 

                                                           
3 www.aszalymonitoring.hu/en 

http://www.aszalymonitoring.hu/en
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The Agricolus platform has also been used in 2021 to monitor the Hungarian case study site to support 

irrigation and minimize potential crop damage. 

 

6.2.3.4 Construction of the database of remotely sensed data 

In contrast to field-based experiments, satellite imagery provides a much more economical and cost-

effective and labour and time saving data collection opportunity (Romano et al., 2020). Nowadays, 

high resolution satellite datasets are easily and freely accessible online. VULTUS designed and 

deployed a processing remote sensing pipeline that utilizes optical and microwave remote sensing 

observations from Sentinel-1 and Sentinel-2 satellite imagery to obtain biophysical parameters for 

vegetation, such as above-ground biomass, LAI and soil moisture. Furthermore, the remote sensing 

pipeline also provides insights into monitoring tools that integrate and consider the advanced 

approaches from WP3 and WP5 for monitoring crop growth stages and assessing water retainer 

management. 

SENTINEL 2 Earth observation mission consists of two satellites, Sentinel 2A and Sentinel 2B, phased 

180 degrees from each other on the same orbit. Sentinel 2 flies over the Hungarian site every 5 days, 

at 10:00 am. The NRPB supplied by Sentinel 1 provided turned out not to be useful for any further 

analysis in the end, since the time series did not show any vegetation development, only freshly 

ploughed land was distinguishable from already sown arable land (Zhao, 2021). 

Moderate Resolution Imaging Spectroradiometer (MODIS) is an imaging sensor, launched into orbit 

by NASA in 1999 on board of the Terra satellite and in 2002 on board of the Aqua satellite. Terra flies 

over the area in the morning and Aqua in the afternoon, so they are affected by the differences in 

solar zenith angle and atmospheric humidity. Terra was chosen as data source, since it flies over the 

area 3 hours before the Sentinels. MODIS data are freely available on the Earth Data site, operated by 

the US Geological Survey (USGS, 2020). After gathering the necessary MODIS datasets from the NASA 

Earth Data portal, the calculation of the NDVI data series for the Nyírbátor and the Emilia-Romagna 

site was batch processed using the Sentinel Application Platform. 

The database of the raw remotely sensed observations includes the extracted calculated vegetation 

index series at the location of the SENTINEL pixel centers. In the case of SENTINEL-related index values, 

this is a straightforward solution. In the case of MODIS NDVI, the extracted values were interpolated 

to the SENTINEL pixel centre coordinates (Zhao, 2021)4.  

 

6.2.4 The simplified model of crop coefficients (Kc) with VULTUS data 

In the current modelling scenario a simplified modelling task of the crop coefficient (Kc) to a 1-

dimensional temporal relationship analysis between the environmental factors and remotely sensed 

images have been performed. The following analysis was carried out parcel-wise annually for the 6 

Italian parcels between 2018 and 2020. Since the CER provided hydrometheorological time series for 

two-two selected parcels for each year, thus not all 18 scenarios have been modelled. Furthermore, 

the large arable land for the years of 2020 and 2021 in Hungary was also examined. The current 

chapter introduces step by step, the analysis for the Italian site for 2018-2020, based on the example 

                                                           
4 As part of the WATERAGRI project, a wide benchmark has been implemented/was applied to analyse the effects 
of various interpolation methods, which cannot be introduced in the current report due to page number 
constraints. 
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of the parcel No 8, maize field (Figure 47). The results of the other sites are published in Appendix 3-

Appendix .5. 

In the case of the modelling workflow discussed, each site subject to the analysis was considered as a 

point-type entity, with temporally changing environmental variables (Table 12), which made it 

possible to assess the relationship between natural and theoretical processes. The steps of the analysis 

were as follows: 

(1) Determination of the reference evapotranspiration based on the Penman – Monteith approach. 

(2) Different crop coefficients were assigned to different time periods, in accordance with the plant 

development stages observed for the crop under study.  

- BBCH phenological phases were determined every two weeks both for the Italian sites and 

the Hungarian site. Due to non-continuous in-situ observations, the proper identification of 

the first Kc break point is uncertain, which results in a temporal uncertainty of up to 7 days. 

- Since the theoretical Kc sequence presented in the FAO-56 document is unnaturally 

rectangular and does not reflect the natural process of canopy saturation, the break points of 

the series were curved by the application of two technical approaches. The solution called 

“FAO-56 curved” was to cut 10 days around the break points and implement the spline 

algorithm to estimate missing values. The other approach was the so-called “MidPoint Spline”, 

where only the middle stage plateau was determined by its middle point and the length of the 

plateau phase (Figure 48). 

 

Figure 48: Calculated crop coefficients and their cumulative time series 

Finally, the theoretical crop evapotranspiration time series was determined for each of the three Kc, 

as a combination of the reference evapotranspiration and the crop coefficient time series. The 

estimated ETc values seem more uncertain around the Kc break points (Figure 49). 
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Figure 49: Calculated theoretical crop evapotranspiration 

 

(3) Independently from the first step, the 1-dimensional time series of the pixel centres of all of the 

following indices were established simultaneously for every year and for each specific parcel: 

NDVI, NDWI, NDRE, NDREw, LAI and NPBR. This step included: 

- The filtering out of outlier index values from the time series for all pixel centres individually 

and the consideration of cloud cover masks and index limit values. 

- In order to minimize the effect of missing values, the median of the contemporal pixel values 

was assigned to each observed time instant. The method provides one single time sequence 

for each distinguished spectral index, which is from now on considered representative for the 

whole parcel under study (Figure 50). 

 

Figure 50: Estimated median type time series of the Leaf Area Index, for the Italian Field 8, in 2018 

 

- Estimation of the empirical Kc curves based on the spectral indices by the fitting of the index-

based time series to the theoretical Kc trend. Until this moment, the index values are only 

known at the time instants observed. The missing values have been estimated by the 

application of the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) approach (Figure 

51). 
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Figure 51: Estimated Kc series compared to the FAO-56 theoretical Kc for Italian parcel No. 8 in 2018 

(4) The combination of the determined ET0 and the estimated index-based and theoretical Kc series 

provides several alternative crop evapotranspiration (ETC) estimates. The cumulative sum of the 

crop evapotranspiration determines the amount of water evaporated during the vegetative 

period (Figure 52). 

 

 

Figure 52: Comparison of crop evapotranspiration and its cumulative series based on the spectral indices analysed and 
theoretical models for Italian parcel No. 8 in 2018 

 

(5) The difference between the cumulative sum of the crop evapotranspiration and precipitation (incl. 

irrigation) gives the cumulative water budget over the area. This factor indicates how much 

irrigation is needed to maintain soil humidity on the same level as it is at the beginning of the 

vegetative period (Figure 53). 
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Figure 53: Cumulated water balance for the Italian Field 8, in 2018 

 

There is significant correlation between the analyzed ETc curves, thus a proper regression model may 

be capable to describe the real crop evapotranspiration based on any other vegetation index (Table 

13). The correlation matrix indicates, that Leaf Area Index is less effective to reproduce the temporal 

pattern of the theoretical curves, while NDVI seems the most effective to predict ETc. 

 

Table 13: Correlation coefficients between estimated ETc curves 

  
FAO-56 Spectral indices 

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI 

Original 1.00 0.98 1.00 0.89 0.93 0.94 0.94 0.94 

Curved 0.98 1.00 0.98 0.85 0.89 0.89 0.90 0.91 

MidPoint 1.00 0.98 1.00 0.89 0.94 0.94 0.95 0.95 

LAI 0.89 0.85 0.89 1.00 0.93 0.95 0.94 0.95 

NDRE 0.93 0.89 0.94 0.93 1.00 0.99 1.00 0.99 

NDREw 0.94 0.89 0.94 0.95 0.99 1.00 1.00 1.00 

NDVI 0.94 0.90 0.95 0.94 1.00 1.00 1.00 0.99 

NDWI 0.94 0.91 0.95 0.95 0.99 1.00 0.99 1.00 

 

(6) Finally, the cross-validation of the results presents the relationship between the index-based and 

theoretical crop evapotranspiration. In this step, both linear and power regression models were 

evaluated (Table 14). Since the LAI-based model has a somewhat exponential nature compared to 

the other indices, be capable of expressing the non-linearity of the relationship between the 

factors investigated. In the current case, the power model of the Normalized Difference Water 

Index generates the least errors for the different metrics (SSE: sum of squared error; R-sq: R-

square: Coeff. of Determination; DFE: Degrees of Freedom error; Adj. R-sq: Same as R-squared 

with adjustment for the number of coefficients; RMSE: Root Means Square Error; nRMSE: 

normalized Root Mean Square Error). 
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Table 14: Results of regression between calculated empirical and theoretical FAO-56 evapotranspiration time series 

 SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula 

NDWI 18.86 0.95 140 0.95 0.37 0.09 1.46 0.75 power 

NDWI 20.30 0.95 140 0.95 0.38 0.10 0.79 0.82 linear 

NDRE 29.96 0.93 140 0.93 0.46 0.11 1.80 0.66 power 

NDVI 27.21 0.93 140 0.93 0.44 0.11 1.60 0.70 power 

NDREw 31.97 0.92 140 0.92 0.48 0.12 1.58 0.71 power 

NDVI 32.20 0.92 140 0.92 0.48 0.12 0.78 0.97 linear 

NDRE 36.84 0.91 140 0.91 0.51 0.12 0.77 1.20 linear 

NDREw 36.32 0.91 140 0.91 0.51 0.12 0.79 0.94 linear 

LAI 69.06 0.81 140 0.81 0.70 0.20 1.28 0.74 power 

LAI 69.54 0.81 140 0.81 0.70 0.20 0.69 0.74 linear 

 

6.2.5 Calculation of ETC for 2020 and 2021 with using RS based Kc calculation 

In this modelling scenario, the advantages of the high temporal resolution of MODIS NDVI and the 

high spatial resolution of the variety of SENTINEL NDVI indices were exploited. Although the MODIS 

and SENTINEL products are obtained from different sensors, a significant relationship can be 

presumed between them on the temporal domain.  

This Chapter takes three approaches to the estimation of missing SENTINEL pixel values: 

1. Co-regionalization: Bivariate spatial interpolation with cokriging 

Using some regression equation (in this case, the linear and the power model were analysed) 

between the SENTINEL and MODIS time series by 

2. Local time series of MODIS pixel centres or 

3. Median time series of the co-temporal MODIS pixel centres. 

The first option is to densify MODIS images spatially via bivariate geostatistical interpolation such as 

the cokriging algorithm. In this case, the spatial pattern of the SENTINEL pixel values would guide the 

estimation with the minimization of estimation covariance. This approach inherently requires a high 

correlation between SENTINEL and MODIS NDVI values for the same time interval. As it can be seen 

in Table 15, there is no significant correlation between the two data products, therefore this approach 

cannot be applied. Optimally, the proportion of the vegetation cover should be equally represented 

on both data products. However, since NDVI expresses the ratio between the soil and chlorophyll 

reflectance and environmental conditions (the availability of water and nutrients) are spatially 

heterogeneous, the pace of development inevitably varies in space. 

The second approach attempts to exploit the temporal profile of both the SENTINEL and the MODIS 

images, by considering each time series of MODIS pixels. In order to be able to perform this analysis, 

we need to predict the MODIS NDVI for exactly the same geolocations, therefore MODIS pixel values 

were spatially interpolated explicitly to the SENTINEL pixel centres with univariate ordinary kriging. 

The approach requires a stationary spatial covariance function valid for the whole study area. 

Thereafter, MODIS time series can be constructed, and correlations between the SENTINEL and MODIS 

NDVI can be determined for each pixel separately. The regression equation between the two products 

enables the estimation of the SENTINEL index values, when only MODIS images are available. 
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Table 15: Preprocessing methodology of the MODIS and SENTINEL NDVI time series 

  Correl 
Linear Power 

nRMSE RMSE nRMSE RMSE 

Coregionalization 0.25 not applicable 

Univariate 
interpolation 

0.68 0.247 0.171 0.257 0.178 

Median time 
series model 

0.81 0.134 0.194 0.13 0.189 

 

In contrast to the above-mentioned method, where each MODIS pixel represents the reflectance sum 

over the observed area, a third, novel approach has been developed to minimize the effects of sub-

pixel spectral mixtures on the MODIS values. This type of error is related to the asphalt roads around 

the study site and an irrigation channel with dense natural vegetation running across the centre of the 

study site. The proportion of the pixels affected is insignificant compared to all available pixels, 

therefore the sequence of the median values of contemporary pixel values can presumably minimize 

the effects of sub-pixel spectral mixtures. Finally, this median time series can be used to estimate 

missing SENTINEL values. 

According to Table 15, the sub-pixel spectral mixture has a more significant effect on the MODIS pixels 

than the locally varying development stage of the vegetation. Figure 54 shows the cumulative 

statistical distribution of the correlation strength between the MODIS-based median model and the 

observed SENTINEL time series. It seems like the median time series based model clearly outperforms 

the local varying time series models 

 

Figure 54: Comparison of pixel-wise correlation coefficients by two different approaches:  
A: Interpolated MODIS NDVI vs SENTINEL NDVI, B: Modelled MODIS NDVI vs SENTINEL NDVI 

The maps below present the spatial pattern of correlation strengths and regression parameters and 

are projected to the “Hungarian Datum 1972 Egységes Országos Vetület” system (EPSG code: 23,700).  

The nearby asphalt cover seems to decrease correlation strength and increase normalized RMS-error 

significantly in the area of the field close to its eastern edge (Figures 55, 56). However, the median 

time series mode can filter this type of error effectively (Figures 57, 58). 
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The effect of the spectral mixture can be evaluated pixel-wise after the calculation of the crop 

evapotranspiration according to the classic workflow of the parcel-scale crop evapotranspiration 

calculation described in the previous Chapter. 

 

 

Figure 55: Interpolated MODIS pixel values to Sentinel pixel values – linear model: A: pixel-wise correlation between 
estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of linear regression coefficient ’a’, D: spatial 

pattern of linear regression coefficient ’b’ 

 

 

Figure 56: Maps of interpolated MODIS pixel values to Sentinel pixel values – power model: A: pixel-wise correlation 
between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of power-type regression coefficient 

’a’, D: spatial pattern of power-type regression coefficient ’b’ 

 

Figure 57: Maps of modeled MODIS optimal time series to Sentinel pixel values – linear relationship: A: pixel-wise 
correlation between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of linear regression 

coefficient ’a’, D: spatial pattern of linear regression coefficient ’b’ 
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Figure 58: Maps of modeled MODIS optimal time series to Sentinel pixel values – power-type relationship: A: pixel-wise 
correlation between estimated MODIS & direct SENTINEL observation, B: nRMSE, C: spatial pattern of power-type 

regression coefficient ’a’, D: spatial pattern of power-type regression coefficient ’b’ 

 

6.2.5.1 Analysis of Sentinel-type Indices vs. MODIS NDVI model 

 

While the previous Chapter indicated a significantly strong correlation between the spectral indices, 

in this Chapter, we attempt to check whether any other available index is worth being considered in 

the analysis. As the highest resolution spectral bands (Red and near IR) enable the effective use of the 

MODIS - NDVI index, Figure 59 and Figure 60 suggest that Sentinel-type NDWI closely mimics the 

efficiency of the NDVI index, while LAI shows mediocre and NDRE shows very weak performance if 

used in a hybrid MODIS – Sentinel fusion model. 

 

 

Figure 59: Correlation coefficients: MODIS-NDVI vs SENTINEL products: A: NDVI, B: LAI, C: NDWI, D: NDRE 
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Figure 60: Comparison of correlation coefficient histograms over the field 

 

6.2.5.2 Estimation of the water demand on the Nyírbátor field 

 

The reference evapotranspiration series has been calculated from the combination of the in-situ 

sensors using the Penman-Monteith approach, following the methodology introduced in Section 6.2.4. 

The high spatio-temporal dataset of NDVI pixel values has been calculated by the median-model based 

technique introduced in Section 6.2.5.1. In addition, the crop coefficient from the FAO-56 paper 

determines the typical Kc values for maize. The transformation of the NDVI values can be carried out 

by the fitting of the unstructured statistical distribution of the whole set of NDVI values to the 

statistical distribution of the unstructured FAO-56 Kc series. The method is analogous with the normal-

score transformation well-known from geostatistics. The method ensures that the relative difference 

between the Kc values just calculated both in the spatial and temporal context can be retained for 

each pixel centre.  

The combination of the ETo time sequence with the now available Kc spatiotemporal values and the 

irrigation data series gives the water budget relative to the conditions at the starting time of the 

simulation. Figure 61 shows the relative water balance of the area at some selected time instant. The 

images make it clear that the relative change of water balance from the time of sowing in March to 

September in the rainy year of 2020 was the same as until July in the much more arid year of 2021 

(Figure 61). The variable spatial distribution of relative water balance change indicates the importance 

of the implementation of precision irrigation. 

The patterns of crop evapotranspiration can be expressed both in map and time series format. Figure 

62 shows that the median of the pixel-wise separately estimated water balance sequences closely 

represents the FAO-56-based theoretical evapotranspiration sequence. 
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Figure 61: Comparison of the spatial pattern of estimated water balance on A: 4th of July 2020; B: 15th of August 2020.; C: 
13th of July 2021; D: 10th of September 2021 on the Nyírbátor site 

 

 

Figure 62: Cumulative water deficit estimate by NDVI based crop evapotranspiration for 2020 

 

6.2.6 NDVI-based ETc estimations in water balance modelling 

 

NDVI-based ETc values of maize for the vegetation period of 2021 were integrated into the 

previously validated Hydrus-based soil physical model (Chapter 4.1). The aim was to assess how ETc 

values correspond to measured soil moisture data.  

First, the NDVI-based ETc values were calculated for the maize vegetation period in 2021 for 

the Hungarian case study site. The sowing date of the maize was 21 May, 2021 and the harvesting 

date was 13 September, 2021. The entire time period was divided into 4 crop development stages  
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(Table 16). Precipitation data were collected from a hydro-meteorological station (DavisMET) located 

next to the site. 

 
Table 16: Lengths and VI based ETc ranges according to the crop development stages. 

Stage Indicators 
Time period, T 

[days] 

ETc range, 

[mm·day-1] 

Initial 

Planting date (or the start of new 

leaves for perennials) to 10% ground 

cover. 

21 May, 2021 

– 

24 June, 2021 

(35 days) 

0.99-4.41 

Crop 

development 

10% ground cover to effective full 

cover, about 60-70% coverage for tree 

crops and 70-80% for field and row 

crops. 

25 June, 2021 

– 

30 July, 2021 

(36 days) 

2.00-6.40 

Mid-season 

Effective full cover to maturity, 

indicated by yellowing of leave, leaf 

drop, browning of fruit. 

31 July, 2020 

– 

26 August, 2021 

(27 days) 

1.03-5.12 

Late-season 

Maturity to harvest: Kc value could be 

high, if the crop is irrigated frequently 

until fresh harvest or low, if the crop is 

allowed to dry out in the field before 

harvest. 

27 August, 2021 

– 

13 September, 2021 

(18 days) 

1.10-3.18 

 

NDVI-based ETc served as an input for the Hydrus-based soil physical model for the simulation 

of soil moisture content changes. For comparison, the soil moisture profile measured at 15 cm depth 

was considered. The water content at sowing time was 25.6% according to the soil moisture sensor 

and used as initial condition. Simulated soil moisture values were higher than the measured ones. The 

difference was the highest from the second week of June until the middle of July (initial and first half 

of the development stage). The maximum differences exceeded 10% in the middle of that period 

(Figure 63). 

The temporal dynamics of measured and modelled soil moisture contents were compared 

based on a curve estimation procedure for the entire investigated time period considering the 

different crop development stages. The software Grapher 17 was used for the estimation of regression 

models (Table 17). R2 values were determined for each crop development stage, and their weighted 

average value for the entire time period was also calculated. R2 values were found to be the highest 

for the mid-season and the late-season stages and the lowest for the initial stage. 
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Figure 63: Measured and simulated soil moisture contents for the Nyírbátor site in the vegetative period of 2021 

 
Table 17: The calculated R2 values for each crop development stage and the weighted average value for the entire period 

Stage Coef. of determination (R2) 

Initial 0.21 

Crop development 0.45 

Mid-season 0.67 

Late-season 0.53 

Average 0.44 

 

The weak prediction in the initial and the development stages may be explained by the 

extreme weather conditions in June 2021, which has been the driest and the third hottest June since 

1901 (HMS, 2021). 

 

Results suggest at the same time that NDVI-based ETc models perform well for the estimation 

of maize water balance in the mid-season stage. July and August are the most important months from 

the point of view of irrigation for two reasons. First, based on long-time historical climate data, this 

time period is most affected by drought. Second, maize requires the largest amount of water during 

its flowering stage. 
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7 Conclusions 

Physically-based modelling and remote sensing-based vegetation status surveying can be used 

for accurate irrigation scheduling. A Finnish case study shows that controlled tile drainage systems can 

be an alternative for irrigation in areas where shallow groundwater is available in addition to surface 

water. However, shallow groundwater and/or soil compaction can also contribute to excess inland 

water. This may occur even if there are drought periods in a year (e.g. in the Pannonian region), 

resulting in spots with a low crop yield. A LiDAR-based digital elevation model was found to provide 

appropriate data to identify sites affected by excess inland water. The spots identified can be used as 

spatial input data to compile a variable rate irrigation prescription map for imposing reduced (or zero) 

irrigation at areas more vulnerable to the occurrence of excess inland water. 

The water balance was also assessed for sites with physically-based models. Hydrus was used 

to model soil moisture changes at the Hungarian case study site. Furthermore, an analysis with 

different meteorological conditions forcing the HydroGeoSphere model for the Lower Silesia case 

study site was performed to demonstrate the model's potential in representing all important 

components of the water cycle in an integrated and physically explicit way. 

The potential of the use of remote sensing-based vegetation indices in irrigation scheduling 

was also assessed. Besides SPI (Standardized Precipitation Index), CWSI (Crop Water Stress Index) was 

also an effective tool to detect vegetation stress at the Finnish case study site. Landsat-based wheat 

yield prediction models were established based on data collected from the Pannonian region, which 

predicts yield six weeks before harvesting. This information can reduce the impacts of possible yield 

losses if provided to farmers who can refine the irrigation schedules of these fields. 

A model concept for crop evapotranspiration estimation was developed based on vegetation 

indices calculated from satellite imagery. Several combinations of sensors and remote sensing 

products were tested to use in ETc modelling potentially. This approach was tested both at the 

Hungarian and the Italian case study sites. Remote sensing-based analysis of crop evapotranspiration, 

combined with physically-based modelling, appears to be a promising method in water balance 

modelling of maize fields, especially if these fields are in summer when the crop is fully developed. 

However, the remotely sensed information verification is essential for the proper utilization of the 

remote sensing data in ETc modelling and predicting the spatio-temporal dynamics of crop yield, 

evapotranspiration, and irrigation demands. 

We need further benchmark scenarios to improve both physically-based models and satellite-based 

crop evapotranspiration models to achieve more accurate and valid simulations. Further research and 

validations will be done under Task 5.10 of the WATERAGRI project to generate more reliable remote 

sensing-based water balance models, which can support the efficiency of irrigation scheduling. 
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9 Appendices 

Appendix 1 

A1: Standardized Precipitation Index 
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A2: Monthly precipitation rate in June 
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A3: Monthly precipitation rate in July 
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A4: Monthly precipitation rate in Aug 
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Appendix 2 Temperature Frequency in growing season over the 

last 20 years in Finnish study site 
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Appendix 3: Italy, 2018 

Field ID: 8 Comparison of estimation model performances 

Correlation coefficients between estimated ETc curves 

 

 

Regression between calculated empirical and theoretical FAO-56 evapotranspiration series 

 

Field ID: 8 Validation of crop evapotranspiration series 

 

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI

Original 1,00 0,98 1,00 0,89 0,93 0,94 0,94 0,94

Curved 0,98 1,00 0,98 0,85 0,89 0,89 0,90 0,91

MidPoint 1,00 0,98 1,00 0,89 0,94 0,94 0,95 0,95

LAI 0,89 0,85 0,89 1,00 0,93 0,95 0,94 0,95

NDRE 0,93 0,89 0,94 0,93 1,00 0,99 1,00 0,99

NDREw 0,94 0,89 0,94 0,95 0,99 1,00 1,00 1,00

NDVI 0,94 0,90 0,95 0,94 1,00 1,00 1,00 0,99

NDWI 0,94 0,91 0,95 0,95 0,99 1,00 0,99 1,00

FAO-56 Spectral Indices

SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula

NDWI 18.863 0.954 140 0.953 0.367 9% 1.457 0.747 power

NDWI 20.304 0.950 140 0.950 0.381 10% 0.791 0.815 linear

NDRE 29.959 0.926 140 0.926 0.463 11% 1.796 0.657 power

NDVI 27.205 0.933 140 0.932 0.441 11% 1.602 0.701 power

NDREw 31.968 0.924 140 0.923 0.478 12% 1.583 0.711 power

NDVI 32.203 0.921 140 0.920 0.480 12% 0.778 0.972 linear

NDRE 36.839 0.909 140 0.909 0.513 12% 0.774 1.197 linear

NDREw 36.320 0.913 140 0.913 0.509 12% 0.789 0.941 linear

LAI 69.062 0.809 140 0.808 0.702 20% 1.284 0.743 power

LAI 69.543 0.808 140 0.806 0.705 20% 0.688 0.737 linear
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Field ID: 11 Comparison of estimation model performances – table  

Correlation coefficients between estimated ETc curves 

 

 

Regression between calculated empirical and theoretical FAO-56 evapotranspiration series 

 

Field ID: 11 Validation of crop evapotranspiration series 

 

  

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI

Original 1,00 0,99 1,00 0,88 0,91 0,90 0,92 0,88

Curved 0,99 1,00 0,99 0,83 0,86 0,85 0,88 0,84

MidPoint 1,00 0,99 1,00 0,89 0,91 0,90 0,92 0,89

LAI 0,88 0,83 0,89 1,00 0,94 0,95 0,95 0,94

NDRE 0,91 0,86 0,91 0,94 1,00 1,00 1,00 0,99

NDREw 0,90 0,85 0,90 0,95 1,00 1,00 0,99 1,00

NDVI 0,92 0,88 0,92 0,95 1,00 0,99 1,00 0,98

NDWI 0,88 0,84 0,89 0,94 0,99 1,00 0,98 1,00

FAO-56 Spectral Indices

SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula

NDVI 31.746 0.920 140 0.920 0.476 11% 1.774 0.656 power

NDRE 38.938 0.899 140 0.899 0.527 12% 2.041 0.595 power

NDVI 39.039 0.902 140 0.901 0.528 12% 0.764 1.178 linear

NDREw 44.341 0.873 140 0.872 0.563 13% 2.104 0.563 power

NDWI 48.941 0.850 140 0.849 0.591 13% 2.310 0.517 power

NDRE 48.813 0.874 140 0.873 0.590 13% 0.741 1.503 linear

NDREw 52.685 0.849 140 0.848 0.613 14% 0.692 1.629 linear

NDWI 57.774 0.823 140 0.822 0.642 14% 0.660 1.889 linear

LAI 65.684 0.786 140 0.784 0.685 19% 1.548 0.631 power

LAI 69.416 0.773 140 0.772 0.704 20% 0.620 1.091 linear
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Appendix 4: Italy, 2019 

Field ID: 11 Comparison of estimation model performances – table 

Correlation coefficients between estimated ETc curves 

 

Regression between calculated empirical and theoretical FAO-56 evapotranspiration series 

 

 

Field ID: 11 Validation of crop evapotranspiration series 

 

  

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI

Original 1,00 0,99 1,00 0,94 0,99 0,99 0,99 0,98

Curved 0,99 1,00 0,99 0,95 0,98 0,98 0,98 0,98

MidPoint 1,00 0,99 1,00 0,95 0,99 0,99 0,99 0,99

LAI 0,94 0,95 0,95 1,00 0,96 0,97 0,97 0,98

NDRE 0,99 0,98 0,99 0,96 1,00 1,00 1,00 0,99

NDREw 0,99 0,98 0,99 0,97 1,00 1,00 1,00 0,99

NDVI 0,99 0,98 0,99 0,97 1,00 1,00 1,00 0,99

NDWI 0,98 0,98 0,99 0,98 0,99 0,99 0,99 1,00

FAO-56 Spectral Indices

SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula

NDWI 28.282 0.970 175 0.969 0.402 11% 0.899 1.045 power

NDREw 30.418 0.967 175 0.967 0.417 11% 0.961 0.139 linear

NDWI 29.075 0.969 175 0.969 0.408 11% 0.966 0.032 linear

NDREw 31.301 0.966 175 0.966 0.423 12% 1.013 0.985 power

NDRE 37.752 0.959 175 0.959 0.464 12% 0.958 0.292 linear

NDVI 35.133 0.960 175 0.960 0.448 12% 0.938 0.208 linear

NDRE 38.910 0.958 175 0.958 0.472 12% 1.161 0.922 power

NDVI 36.431 0.959 175 0.959 0.456 13% 1.056 0.956 power

LAI 71.735 0.909 175 0.909 0.640 19% 0.862 0.192 linear

LAI 73.532 0.907 175 0.906 0.648 19% 0.877 1.015 power
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Field ID: 15 Comparison of estimation model performances – table  

Correlation coefficients between estimated ETc curves 

 

Regression between calculated empirical and theoretical FAO-56 evapotranspiration series 

 

 

Field ID: 15 Validation of crop evapotranspiration series 

 

 

  

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI

Original 1,00 0,99 1,00 0,94 0,99 0,98 0,99 0,98

Curved 0,99 1,00 0,99 0,95 0,99 0,99 0,99 0,98

MidPoint 1,00 0,99 1,00 0,95 0,99 0,99 0,99 0,98

LAI 0,94 0,95 0,95 1,00 0,96 0,98 0,97 0,98

NDRE 0,99 0,99 0,99 0,96 1,00 1,00 1,00 0,99

NDREw 0,98 0,99 0,99 0,98 1,00 1,00 1,00 1,00

NDVI 0,99 0,99 0,99 0,97 1,00 1,00 1,00 0,99

NDWI 0,98 0,98 0,98 0,98 0,99 1,00 0,99 1,00

FAO-56 Spectral Indices

SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula

NDREw 19.386 0.978 175 0.978 0.333 9% 0.939 0.209 linear

NDVI 19.877 0.977 175 0.977 0.337 9% 0.933 0.230 linear

NDREw 20.127 0.977 175 0.977 0.339 9% 1.078 0.945 power

NDVI 20.247 0.976 175 0.976 0.340 9% 1.102 0.931 power

NDRE 21.878 0.976 175 0.976 0.354 9% 1.182 0.911 power

NDRE 22.219 0.976 175 0.975 0.356 9% 0.959 0.279 linear

NDWI 27.821 0.965 175 0.965 0.399 11% 0.892 0.364 linear

NDWI 29.976 0.962 175 0.962 0.414 11% 1.142 0.901 power

LAI 58.370 0.912 175 0.911 0.578 18% 0.789 0.364 linear

LAI 60.562 0.908 175 0.908 0.588 18% 1.040 0.890 power
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Appendix 5. Italy, 2020 

Field ID: 20 Comparison of estimation model performances – table  

Correlation coefficients between estimated ETc curves 

 

Regression between calculated empirical and theoretical FAO-56 evapotranspiration series 

 

 

Field ID: 20 Validation of crop evapotranspiration series 

 

  

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI

Original 1,00 0,98 1,00 0,96 0,99 0,99 0,99 0,96

Curved 0,98 1,00 0,98 0,96 0,96 0,97 0,96 0,93

MidPoint 1,00 0,98 1,00 0,96 0,99 0,99 0,99 0,97

LAI 0,96 0,96 0,96 1,00 0,95 0,97 0,96 0,92

NDRE 0,99 0,96 0,99 0,95 1,00 1,00 1,00 0,98

NDREw 0,99 0,97 0,99 0,97 1,00 1,00 1,00 0,97

NDVI 0,99 0,96 0,99 0,96 1,00 1,00 1,00 0,97

NDWI 0,96 0,93 0,97 0,92 0,98 0,97 0,97 1,00

FAO-56 Spectral Indices

SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula

NDREw 27.008 0.948 165 0.947 0.405 10% 1.485 0.778 linear

NDREw 31.314 0.939 165 0.939 0.436 11% 0.879 0.745 power

NDVI 32.438 0.939 165 0.939 0.443 11% 1.499 0.777 linear

NDRE 36.678 0.932 165 0.931 0.471 11% 1.664 0.734 linear

NDVI 38.271 0.928 165 0.928 0.482 12% 0.889 0.736 power

LAI 40.806 0.912 165 0.912 0.497 14% 0.822 0.528 power

LAI 41.399 0.911 165 0.911 0.501 14% 1.213 0.839 linear

NDRE 44.800 0.917 165 0.916 0.521 12% 0.884 0.940 power

NDWI 51.603 0.890 165 0.889 0.559 12% 2.230 0.595 linear

NDWI 64.274 0.863 165 0.862 0.624 13% 0.802 1.703 power
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Field ID: 21 Comparison of estimation model performances – table  

Correlation coefficients between estimated ETc curves 

 

 

Regression between calculated empirical and theoretical FAO-56 evapotranspiration series 

 

 

Field ID: 21 Validation of crop evapotranspiration series 

 

 

Original Curved MidPoint LAI NDRE NDREw NDVI NDWI

Original 1,00 0,98 1,00 0,95 0,99 0,99 0,99 0,96

Curved 0,98 1,00 0,98 0,95 0,95 0,96 0,95 0,93

MidPoint 1,00 0,98 1,00 0,96 0,99 0,99 0,99 0,96

LAI 0,95 0,95 0,96 1,00 0,95 0,96 0,95 0,92

NDRE 0,99 0,95 0,99 0,95 1,00 1,00 1,00 0,98

NDREw 0,99 0,96 0,99 0,96 1,00 1,00 1,00 0,97

NDVI 0,99 0,95 0,99 0,95 1,00 1,00 1,00 0,97

NDWI 0,96 0,93 0,96 0,92 0,98 0,97 0,97 1,00

FAO-56 Spectral Indices

SSE R-sq DFE Adj. R-sq RMSE nRMSE a b formula

NDREw 33.425 0.935 165 0.935 0.450 11% 1.491 0.773 power

NDREw 37.740 0.927 165 0.926 0.478 12% 0.870 0.764 linear

NDVI 41.626 0.921 165 0.921 0.502 13% 1.517 0.766 power

NDRE 44.960 0.916 165 0.915 0.522 12% 1.679 0.727 power

LAI 46.651 0.901 165 0.900 0.532 15% 0.822 0.519 linear

LAI 47.391 0.900 165 0.899 0.536 15% 1.203 0.843 power

NDVI 47.731 0.910 165 0.909 0.538 13% 0.874 0.777 linear

NDRE 53.341 0.900 165 0.900 0.569 14% 0.875 0.968 linear

NDWI 54.341 0.884 165 0.883 0.574 12% 2.241 0.591 power

NDWI 66.850 0.857 165 0.856 0.637 14% 0.797 1.721 linear


